Playing Schmidt Games with Markov Partitions
A Study of Nondense Orbits

Jim Tseng
Brandeis University

Penn State Dynamics Workshop
19 October 2007
Background

- M - A compact Riemannian manifold.
Background

- M - A compact Riemannian manifold.
- σ - The (probability) volume measure on M.

$T : M \to M$ - A C^2-expanding map, which means (perhaps after a suitable smooth change of Riemannian metric), that there exists $\lambda > 1$ such that $\|D_x T(v)\| \geq \lambda \|v\|$ for all $x \in M$ and for all $v \in T_x M$.

There is an ergodic probability T-invariant measure equivalent to σ.
Background

- M - A compact Riemannian manifold.
 - σ - The (probability) volume measure on M.
- $T : M \to M$ - A C^2-expanding map,
Background

- M - A compact Riemannian manifold.
 - σ - The (probability) volume measure on M.
- $T : M \to M$ - A C^2-expanding map, which means (perhaps after a suitable smooth change of Riemannian metric), that there exists $\lambda > 1$ such that
 \[\| D_x T(v) \| \geq \lambda \| v \| \]
 for all $x \in M$ and for all $v \in T_x M$.

Background

- M - A compact Riemannian manifold.
 - σ - The (probability) volume measure on M.
- $T : M \to M$ - A C^2-expanding map, which means (perhaps after a suitable smooth change of Riemannian metric), that there exists $\lambda > 1$ such that
 \[\|D_x T(v)\| \geq \lambda \|v\| \]
 for all $x \in M$ and for all $v \in T_x M$.
- There is an ergodic probability T-invariant measure equivalent to σ.
The Basics of Nondense Orbits

\[0^+_T(x) := \{ x, T(x), T^2(x), \cdots \}. \]
The Basics of Nondense Orbits

- \(\mathcal{O}_T^+(x) := \{ x, T(x), T^2(x), \cdots \} \).
- Our main object of study:

\[
A := \{ x \in M \mid \overline{\mathcal{O}_T^+(x)} \subsetneq M \}.
\]
The Basics of Nondense Orbits

- $\mathcal{O}_T^+(x) := \{x, T(x), T^2(x), \cdots \}$.
- Our main object of study:
 \[A := \{x \in M \mid \overline{\mathcal{O}_T^+(x)} \subset M\}. \]
- By the Birkhoff Ergodic Theorem, $\sigma(A) = 0$.
\[\mathcal{O}_T^+(x) := \{ x, T(x), T^2(x), \ldots \}. \]

Our main object of study:

\[A := \{ x \in M \mid \overline{\mathcal{O}_T^+(x)} \not\subseteq M \}. \]

By the Birkhoff Ergodic Theorem, \(\sigma(A) = 0 \).

However ...
The Hausdorff Dimension (HD) of Nondense Orbits

Theorem (M. Urbański, 1991)

\[HD(A) = \dim(M). \]
The Hausdorff Dimension (HD) of Nondense Orbits

Theorem (M. Urbański, 1991)

\[HD(A) = \dim(M). \]

Another interesting theorem:
The Hausdorff Dimension (HD) of Nondense Orbits

Theorem (M. Urbański, 1991)

\[HD(A) = \dim(M). \]

Another interesting theorem:

- \(f \) - a piecewise expanding map of an interval \(I \).
The Hausdorff Dimension (HD) of Nondense Orbits

Theorem (M. Urbański, 1991)

\[\text{HD}(A) = \text{dim}(M). \]

Another interesting theorem:

- \(f \) - a piecewise expanding map of an interval \(I \).
- \(B \) - a subset of \(I \).
The Hausdorff Dimension (HD) of Nondense Orbits

Theorem (M. Urbański, 1991)

\[HD(A) = \dim(M). \]

Another interesting theorem:

- \(f \) - a piecewise expanding map of an interval \(I \).
- \(B \) - a subset of \(I \).

Theorem (D. Dolgopyat, 1997)

If \(HD(B) < 1 \), then the set of points whose forward orbits eventually avoid \(B \) has Hausdorff dimension 1.
The First Main Tool: Markov Partitions

A set \(\{R_1, \cdots, R_s\} \) of subsets of \(M \) is a Markov partition for \(T \) (a \(C^2 \)-expanding self-map) if:

- They cover \(M \).
- Each element is the closure of its interior.
- Interiors of the elements are pairwise disjoint.
- The boundary of each element has zero volume.
- The diameters of all elements are small enough so that \(T \) is injective on all elements.
- \(T(R_i) \) is a union of elements.
A set \(\{R_1, \ldots, R_s\} \) of subsets of \(M \) is a **Markov partition** for \(T \) (a \(C^2 \)-expanding self-map) if:

- They cover \(M \).
A set \(\{R_1, \cdots, R_s\} \) of subsets of \(M \) is a **Markov partition** for \(T \) (a \(C^2 \)-expanding self-map) if:

- They cover \(M \).
- Each element is the closure of its interior.
A set \(\{R_1, \cdots, R_s\} \) of subsets of \(M \) is a \textbf{Markov partition} for \(T \) (a \(C^2 \)-expanding self-map) if:

- They cover \(M \).
- Each element is the closure of its interior.
- Interiors of the elements are pairwise disjoint.
A set \(\{R_1, \cdots, R_s\} \) of subsets of \(M \) is a **Markov partition** for \(T \) (a \(C^2 \)-expanding self-map) if:

- They cover \(M \).
- Each element is the closure of its interior.
- Interiors of the elements are pairwise disjoint.
- The boundary of each element has zero volume.
A set \(\{R_1, \cdots, R_s\} \) of subsets of \(M \) is a **Markov partition** for \(T \) (a \(C^2 \)-expanding self-map) if:

- They cover \(M \).
- Each element is the closure of its interior.
- Interiors of the elements are pairwise disjoint.
- The boundary of each element has zero volume.
- The diameters of all elements are small enough so that \(T \) is injective on all elements.
A set \(\{R_1, \cdots, R_s\} \) of subsets of \(M \) is a **Markov partition** for \(T \) (a \(C^2 \)-expanding self-map) if:

- They cover \(M \).
- Each element is the closure of its interior.
- Interiors of the elements are pairwise disjoint.
- The boundary of each element has zero volume.
- The diameters of all elements are small enough so that \(T \) is injective on all elements.
- \(T(R_i) \) is a union of elements.
- $\tilde{\Sigma}$ - the set of all one-sided infinite sequences $\alpha := \alpha_0 \alpha_1 \cdots$ in the alphabet $\{1, \cdots, s\}$.

- ϕ - the left shift operator.
The First Main Tool: Markov Partitions

- $\bar{\Sigma}$ - the set of all one-sided infinite sequences $\alpha := \alpha_0\alpha_1 \cdots$ in the alphabet $\{1, \cdots, s\}$.
- φ - the left shift operator.
The First Main Tool: Markov Partitions

- $\bar{\Sigma}$ - the set of all one-sided infinite sequences $\alpha := \alpha_0 \alpha_1 \cdots$ in the alphabet $\{1, \cdots, s\}$.
- φ - the left shift operator.
- $\Sigma := \{ \alpha \in \bar{\Sigma} \mid T(R_{\alpha_{j-1}}) \cap \text{Int} R_{\alpha_j} \neq \emptyset \ \forall \ j \in \mathbb{N} \}$
The First Main Tool: Markov Partitions

- $\tilde{\Sigma}$ - the set of all one-sided infinite sequences $\alpha := \alpha_0\alpha_1 \cdots$ in the alphabet $\{1, \cdots, s\}$.
- φ - the left shift operator.
- $\Sigma := \{\alpha \in \tilde{\Sigma} | T(R_{\alpha_{j-1}}) \cap \text{Int}R_{\alpha_j} \neq \emptyset \ \forall \ j \in \mathbb{N}\}$

The Markov partition provides a semi-conjugacy

$$\pi : (\Sigma, \varphi) \rightarrow (M, T) \quad \alpha \mapsto R_\alpha$$

where

$$R_\alpha := R_{\alpha_0} \cap T^{-1}(R_{\alpha_1}) \cap \cdots \cap T^{-n}(R_{\alpha_n}) \cap \cdots .$$
The First Main Tool: Markov Partitions

- $\bar{\Sigma}$ - the set of all one-sided infinite sequences $\alpha := \alpha_0\alpha_1 \cdots$ in the alphabet $\{1, \cdots, s\}$.
- φ - the left shift operator.
- $\Sigma := \{\alpha \in \bar{\Sigma} \mid T(R_{\alpha_{j-1}}) \cap \text{Int} R_{\alpha_j} \neq \emptyset \ \forall \ j \in \mathbb{N}\}$

The Markov partition provides a semi-conjugacy

$$\pi : (\Sigma, \varphi) \to (M, T) \quad \alpha \mapsto R_\alpha$$

where

$$R_\alpha := R_{\alpha_0} \cap T^{-1}(R_{\alpha_1}) \cap \cdots \cap T^{-n}(R_{\alpha_n}) \cap \cdots$$

Note that R_α is a point in M.
The Simplest Example of a Markov Partition

Let

\[S^1 = \mathbb{R}/\mathbb{Z} \]

denote the circle and

\[\{ R_0 := [0, \frac{1}{2}], R_1 := [\frac{1}{2}, 1] \} \]

is a Markov partition for \(E_2 \).

Continuing, one creates infinite sequences \(\alpha \) that correspond to a binary expansion of the real number \(R_\alpha \).
The Simplest Example of a Markov Partition

Let

\[S^1 = \mathbb{R} / \mathbb{Z} \]

denote the circle and

\[E_2 : S^1 \rightarrow S^1 \text{ denote } x \mapsto 2x \mod 1. \]

Continuing, one creates infinite sequences \(\alpha \) that correspond to a binary expansion of the real number \(R_\alpha \).
The Simplest Example of a Markov Partition

Let

\[S^1 = \mathbb{R}/\mathbb{Z} \]

denote the circle and

\[E_2 : S^1 \to S^1 \] denote \(x \mapsto 2x \mod 1 \).

\[\{ R_0 := [0, 1/2], R_1 := [1/2, 1] \} \]

is a Markov partition for \(E_2 \).
The Simplest Example of a Markov Partition

Let

\[S^1 = \mathbb{R}/\mathbb{Z} \]

denote the circle and

\[E_2 : S^1 \to S^1 \text{ denote } x \mapsto 2x \mod 1. \]

\[\{ R_0 := [0, 1/2], R_1 := [1/2, 1] \} \]

is a Markov partition for \(E_2 \).

\[R_{00} = [0, 1/4], R_{01} = [1/4, 1/2], R_{10} = [1/2, 3/4], R_{11} = [3/4, 1] \]
The Simplest Example of a Markov Partition

- Let
 \[S^1 = \mathbb{R}/\mathbb{Z} \]
 denote the circle and

- \[E_2 : S^1 \to S^1 \] denote \(x \mapsto 2x \mod 1 \).

- \(\{ R_0 := [0, 1/2], R_1 := [1/2, 1] \} \)
 is a Markov partition for \(E_2 \).

- \(R_{00} = [0, 1/4], R_{01} = [1/4, 1/2], R_{10} = [1/2, 3/4], R_{11} = [3/4, 1] \)

- Continuing, one creates infinite sequences \(\alpha \) that correspond to a binary expansion of the real number \(R_\alpha \).
The Second Main Tool: Schmidt Games

- Introduced by W. Schmidt in 1966.

Let $0 < \alpha < 1$ and $0 < \beta < 1$. Let S be a subset of a complete metric space M. Two players alternate choosing nested closed balls $B_1 \supset W_1 \supset B_2 \supset W_2 \cdots$ on M. Require $\text{radius}(W_n) = \alpha \cdot \text{radius}(B_n)$ and $\text{radius}(B_n) = \beta \cdot \text{radius}(W_{n-1})$. The second player wins if the intersection of these balls lies in S. The set S is called α-winning if the second player can always win for any β.

J. Tseng (Brandeis University)
The Second Main Tool: Schmidt Games

- Introduced by W. Schmidt in 1966.
- Let $0 < \alpha < 1$ and $0 < \beta < 1$.

Let S be a subset of a complete metric space M. Two players alternate choosing nested closed balls $B_1 \supset W_1 \supset B_2 \supset W_2 \cdots$ on M. Require $\text{radius}(W_n) = \alpha \cdot \text{radius}(B_n)$ and $\text{radius}(B_n) = \beta \cdot \text{radius}(W_{n-1})$. The second player wins if the intersection of these balls lies in S. The set S is called α-winning if the second player can always win for any β.

J. Tseng (Brandeis University) Schmidt Games and Markov Partitions Penn State 19 October 2007 8 / 23
The Second Main Tool: Schmidt Games

- Introduced by W. Schmidt in 1966.
- Let $0 < \alpha < 1$ and $0 < \beta < 1$.
- Let S be a subset of a complete metric space M.

Two players alternate choosing nested closed balls $B_1 \supset W_1 \supset B_2 \supset W_2 \cdots$ on M. Require $\text{radius}(W_n) = \alpha \cdot \text{radius}(B_n)$ and $\text{radius}(B_n) = \beta \cdot \text{radius}(W_{n-1}).$ The second player wins if the intersection of these balls lies in S. The set S is called α-winning if the second player can always win for any β.

J. Tseng (Brandeis University) Schmidt Games and Markov Partitions Penn State 19 October 2007 8 / 23
The Second Main Tool: Schmidt Games

• Introduced by W. Schmidt in 1966.
• Let $0 < \alpha < 1$ and $0 < \beta < 1$.
• Let S be a subset of a complete metric space M.
• Two players alternate choosing nested closed balls

\[B_1 \supset W_1 \supset B_2 \supset W_2 \cdots \]

on M.
The Second Main Tool: Schmidt Games

- Introduced by W. Schmidt in 1966.
- Let $0 < \alpha < 1$ and $0 < \beta < 1$.
- Let S be a subset of a complete metric space M.
- Two players alternate choosing nested closed balls

$$B_1 \supset W_1 \supset B_2 \supset W_2 \cdots$$

on M.
- Require

$$\text{radius}(W_n) = \alpha \cdot \text{radius}(B_n)$$

and

$$\text{radius}(B_n) = \beta \cdot \text{radius}(W_{n-1})$$

The second player wins if the intersection of these balls lies in S.

The set S is called α-winning if the second player can always win for any β.
The Second Main Tool: Schmidt Games

- Introduced by W. Schmidt in 1966.
- Let $0 < \alpha < 1$ and $0 < \beta < 1$.
- Let S be a subset of a complete metric space M.
- Two players alternate choosing nested closed balls

 \[B_1 \supset W_1 \supset B_2 \supset W_2 \cdots \]

 on M.
- Require

 \[\text{radius}(W_n) = \alpha \cdot \text{radius}(B_n) \] and
The Second Main Tool: Schmidt Games

- Introduced by W. Schmidt in 1966.
- Let $0 < \alpha < 1$ and $0 < \beta < 1$.
- Let S be a subset of a complete metric space M.
- Two players alternate choosing nested closed balls

$$B_1 \supset W_1 \supset B_2 \supset W_2 \cdots$$

on M.

- Require
 - $\text{radius}(W_n) = \alpha \cdot \text{radius}(B_n)$ and
 - $\text{radius}(B_n) = \beta \cdot \text{radius}(W_{n-1})$.
The Second Main Tool: Schmidt Games

- Introduced by W. Schmidt in 1966.
- Let $0 < \alpha < 1$ and $0 < \beta < 1$.
- Let S be a subset of a complete metric space M.
- Two players alternate choosing nested closed balls
 \[B_1 \supset W_1 \supset B_2 \supset W_2 \cdots \]
 on M.
- Require
 - $\text{radius}(W_n) = \alpha \cdot \text{radius}(B_n)$ and
 - $\text{radius}(B_n) = \beta \cdot \text{radius}(W_{n-1})$.
- The second player wins if the intersection of these balls lies in S.
The Second Main Tool: Schmidt Games

- Introduced by W. Schmidt in 1966.
- Let $0 < \alpha < 1$ and $0 < \beta < 1$.
- Let S be a subset of a complete metric space M.
- Two players alternate choosing nested closed balls

$$B_1 \supset W_1 \supset B_2 \supset W_2 \cdots$$

on M.
- Require
 - $\text{radius}(W_n) = \alpha \cdot \text{radius}(B_n)$ and
 - $\text{radius}(B_n) = \beta \cdot \text{radius}(W_{n-1})$.
- The second player wins if the intersection of these balls lies in S.
- The set S is called α-winning if the second player can always win for any β.
Schmidt games have two important properties:
Schmidt games have two important properties:

- α-winning sets in \mathbb{R}^n have full Hausdorff dimension.
Schmidt games have two important properties:

- α-winning sets in \mathbb{R}^n have full Hausdorff dimension.
- Countable intersections of α-winning sets are again α-winning.
An Example of a Winning Set

- Let $T^n = \mathbb{R}^n / \mathbb{Z}^n$ be the n-torus.
An Example of a Winning Set

- Let $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ be the n-torus.
- Let ρ be a semisimple surjective endomorphism of \mathbb{T}^n.

Theorem (S. G. Dani, 1988)

The set of points whose forward orbit closures miss the identity element in \mathbb{T}^n is $\frac{1}{2}$-winning.

Corollary (S. G. Dani, 1988)

The set of points whose forward orbit closures under any semisimple surjective endomorphism that miss \mathbb{Q}^n is $\frac{1}{2}$-winning.
An Example of a Winning Set

- Let $T^n = \mathbb{R}^n / \mathbb{Z}^n$ be the n-torus.
- Let ρ be a semisimple surjective endomorphism of T^n.

Theorem (S. G. Dani, 1988)

The set of points whose forward orbit closures miss the identity element 0 in T^n is $1/2$-winning.
Let $T^n = \mathbb{R}^n / \mathbb{Z}^n$ be the n-torus.

Let ρ be a semisimple surjective endomorphism of T^n.

Theorem (S. G. Dani, 1988)

The set of points whose forward orbit closures miss the identity element 0 in T^n is 1/2-winning.

A corollary:

Let $Q = \mathbb{Q}^n / \mathbb{Z}^n$.
An Example of a Winning Set

- Let $T^n = \mathbb{R}^n/\mathbb{Z}^n$ be the n-torus.
- Let ρ be a semisimple surjective endomorphism of T^n.

Theorem (S. G. Dani, 1988)

The set of points whose forward orbit closures miss the identity element 0 in T^n is $1/2$-winning.

A corollary:
- Let $Q = \mathbb{Q}^n/\mathbb{Z}^n$.

Corollary (S. G. Dani, 1988)

The set of points whose forward orbit closures under any semisimple surjective endomorphism that miss Q is $1/2$-winning.
The Idea of the Proof of $HD(A) = \dim(M)$

An outline of Urbański’s elegant proof:

$$\Sigma(n) := \{\gamma_0 \cdots \gamma_n | \cap \bigg(\bigcap_{j=1}^n \text{Int} R_{\gamma_j} \bigg) \neq \emptyset \ \forall \ 1 \leq j \leq n \}.$$

Let $\gamma \in \Sigma(n)$ and consider $U := \text{Int} R_{\gamma}$. Let $\alpha \in \Sigma$. The point R_{α} visits U if and only if γ appears as a substring of α.

Take all infinite sequences $\Sigma_\gamma := \{\alpha \in \Sigma | \gamma \text{ does not appear as a substring of } \alpha \}$. Adapting a version of a lemma by C. McMullen, Urbański tries to show that the set $\bigcup_{n=0}^\infty \bigcup_{\gamma \in \Sigma(n)} \{R_{\alpha} | \alpha \in \Sigma_\gamma \}$ has full Hausdorff dimension. There is, however, a problem: He does not correctly construct Σ_γ.

J. Tseng (Brandeis University) Schmidt Games and Markov Partitions Penn State 19 October 2007 11 / 23
An outline of Urbański’s elegant proof:

- \(\Sigma(n) := \{ \gamma_0 \cdots \gamma_n \mid T(R_{\gamma_{j-1}}) \cap \text{Int} R_{\gamma_j} \neq \emptyset \forall 1 \leq j \leq n \} \).

Let \(\gamma \in \Sigma(n) \) and consider \(U := \text{Int} R_{\gamma} \).

Let \(\alpha \in \Sigma \). The point \(R_\alpha \) visits \(U \) if and only if \(\gamma \) appears as a substring of \(\alpha \).

Take all infinite sequences \(\Sigma \gamma := \{ \alpha \in \Sigma \mid \gamma \text{ does not appear as a substring of } \alpha \} \).

Adapting a version of a lemma by C. McMullen, Urbański tries to show that the set \(\bigcup_{n=0}^{\infty} \gamma \in \Sigma(n) \{ R_\alpha \mid \alpha \in \Sigma \gamma \} \) has full Hausdorff dimension.

There is, however, a problem: He does not correctly construct \(\Sigma \gamma \).
The Idea of the Proof of $HD(A) = \dim(M)$

An outline of Urbański’s elegant proof:

- $\Sigma(n) := \{\gamma_0 \cdots \gamma_n \mid T(R_{\gamma_{j-1}}) \cap \text{Int} R_{\gamma_j} \neq \emptyset \ \forall \ 1 \leq j \leq n\}$.
- Let $\gamma \in \Sigma(n)$ and consider $U := \text{Int} R_{\gamma}$.
The Idea of the Proof of $HD(A) = \dim(M)$

An outline of Urbański’s elegant proof:

- $\Sigma(n) := \{\gamma_0 \cdots \gamma_n \mid T(R_{\gamma_{j-1}}) \cap \text{Int} R_{\gamma_j} \neq \emptyset \ \forall \ 1 \leq j \leq n\}$.
- Let $\gamma \in \Sigma(n)$ and consider $U := \text{Int} R_{\gamma}$.
- Let $\alpha \in \Sigma$. The point R_{α} visits U if and only if γ appears as a substring of α.
The Idea of the Proof of $HD(A) = \dim(M)$

An outline of Urbański’s elegant proof:

- $\Sigma(n) := \{\gamma_0 \cdots \gamma_n \mid T(R_{\gamma_{j-1}}) \cap \text{Int}R_{\gamma_j} \neq \emptyset \ \forall \ 1 \leq j \leq n\}$.
- Let $\gamma \in \Sigma(n)$ and consider $U := \text{Int}R_{\gamma}$.
- Let $\alpha \in \Sigma$. The point R_α visits U if and only if γ appears as a substring of α.
- Take all infinite sequences

 $$\Sigma_\gamma := \{\alpha \in \Sigma \mid \gamma \text{ does not appear as a substring of } \alpha\}.$$
The Idea of the Proof of $\text{HD}(A) = \dim(M)$

An outline of Urbański’s elegant proof:

- $\Sigma(n) := \{\gamma_0 \cdots \gamma_n \mid T(R_{\gamma_{j-1}}) \cap \text{Int} R_{\gamma_j} \neq \emptyset \ \forall \ 1 \leq j \leq n\}$.

- Let $\gamma \in \Sigma(n)$ and consider $U := \text{Int} R_{\gamma}$.

- Let $\alpha \in \Sigma$. The point R_{α} visits U if and only if γ appears as a substring of α.

- Take all infinite sequences

 $$\Sigma_\gamma := \{\alpha \in \Sigma \mid \gamma \text{ does not appear as a substring of } \alpha\}.$$

- Adapting a version of a lemma by C. McMullen, Urbański tries to show that the set

 $$\bigcup_{n=0}^{\infty} \bigcup_{\gamma \in \Sigma(n)} \{R_{\alpha} \mid \alpha \in \Sigma_\gamma\}$$

 has full Hausdorff dimension.
The Idea of the Proof of $HD(A) = \dim(M)$

An outline of Urbański’s elegant proof:

- $\Sigma(n) := \{ \gamma_0 \cdots \gamma_n \mid T(R_{\gamma_{j-1}}) \cap \text{Int} R_{\gamma_j} \neq \emptyset \ \forall \ 1 \leq j \leq n \}$.
- Let $\gamma \in \Sigma(n)$ and consider $U := \text{Int} R_{\gamma}$.
- Let $\alpha \in \Sigma$. The point R_{α} visits U if and only if γ appears as a substring of α.
- Take all infinite sequences

$$\Sigma_{\gamma} := \{ \alpha \in \Sigma \mid \gamma \text{ does not appear as a substring of } \alpha \}.$$

- Adapting a version of a lemma by C. McMullen, Urbański tries to show that the set

$$\bigcup_{n=0}^{\infty} \bigcup_{\gamma \in \Sigma(n)} \{ R_{\alpha} \mid \alpha \in \Sigma_{\gamma} \}$$

has full Hausdorff dimension.
- There is, however, a problem: He does not correctly construct Σ_{γ}.

The Problem with the Proof

- Instead of Σ_γ, the following is constructed:
The Problem with the Proof

Instead of Σ_γ, the following is constructed:

$$\{ \alpha \in \Sigma \mid \gamma \text{ does not appear as a substring of } \alpha \text{ at certain places} \}.$$
Instead of Σ_γ, the following is constructed:

$$\{ \alpha \in \Sigma \mid \gamma \text{ does not appear as a substring of } \alpha \text{ at certain places} \}.$$
The Problem with the Proof

- Instead of $\Sigma\gamma$, the following is constructed:

$$\{\alpha \in \Sigma \mid \gamma \text{ does not appear as a substring of } \alpha \text{ at certain places}\}.$$

- Therefore the proof fails.
My correction is simply to show that γ cannot appear anywhere as a substring in α.
A Correction

- My correction is simply to show that γ cannot appear anywhere as a substring in α.
- Using the correction, Urbański’s original theorem can be slightly strengthened:
A Correction

My correction is simply to show that γ cannot appear anywhere as a substring in α.

Using the correction, Urbański’s original theorem can be slightly strengthened:

Theorem

Choose x_0 from a certain set of full measure in M. Then

$$F_T(x_0) := \{ x \in M \mid x_0 \notin \mathcal{O}^+_T(x) \}$$

has full Hausdorff dimension.
A Correction

- My correction is simply to show that γ cannot appear anywhere as a substring in α.
- Using the correction, Urbański’s original theorem can be slightly strengthened:

Theorem

Choose x_0 from a certain set of full measure in M. Then

$$F_T(x_0) := \{ x \in M \mid x_0 \notin \overline{O_T(x)} \}$$

has full Hausdorff dimension.

- However, as the following technical lemma shows, making the correction can be tricky.....
The Technical Lemma: An Illustration

Lemma (T.)

Let $N \geq n \geq 8s - 4$. Let γ be any n-string such that γ_{n-1} is nondegenerate except those of the following kind:

$$\gamma = a^0 \cdots a^m$$

where

$$a^0 = \ldots = a^{m-1}$$

are general blocks and either

a^m is a general block not equivalent to $a^0 a^0$

or

a^m is a double general block not equivalent to $a^0 a^0$.

And let α be a N-string such that no match of γ with α exists. Then there exists a choice of substrings b^0 and b^1 of length at most s such that, for any letters $\beta_0, \beta_1, \ldots, \beta_k$, no match of γ with the $N+n$-string $\alpha b^0 b^1 \beta_0 \cdots \beta_k$ exists.
Note that Urbański has come up with a second, shorter correction of his original theorem.
A Second Correction

- Note that Urbański has come up with a second, shorter correction of his original theorem.
- But, my original correction leads to
The Main Result: A Generalization in 1-D

Theorem:

Let \(x_0 \in S^1 \). Then

\[
F_T(x_0) := \left\{ x \in S^1 \mid x_0 \notin \Theta_T^+(x) \right\}
\]

is \(\alpha \)-winning for a certain \(\alpha \).
The Main Result: A Generalization in 1-D

Theorem (T.)

Let $x_0 \in S^1$. Then

$$F_T(x_0) := \{x \in S^1 \mid x_0 \notin \mathcal{O}_T^+(x)\}$$

is α-winning for a certain α.

- Recall that T is a C^2-expanding map.
Now let $\{ T_n \}_{n=1}^N$ be any finite set of C^2-expanding self-maps.
Now let \(\{ T_n \}_{n=1}^N \) be any finite set of \(C^2 \)-expanding self-maps.

Corollary (T.)

Choose any \(\{ x_i^n \}_{i=1}^\infty \subset S^1 \). Then

\[
\bigcap_{n=1}^N \bigcap_{i=1}^\infty F_{T_n}(x_i^n)
\]

is \(\alpha \)-winning for a certain \(\alpha \).
Now let \(\{ T_n \}_{n=1}^N \) be any finite set of \(C^2 \)-expanding self-maps.

Corollary (T.)

Choose any \(\{ x^n_i \}_{i=1}^\infty \subset S^1 \). Then

\[
\bigcap_{n=1}^N \bigcap_{i=1}^\infty F_{T_n}(x^n_i)
\]

is \(\alpha \)-winning for a certain \(\alpha \).

These generalize Urbański’s theorem and, in part, Dani’s theorem in dimension one.
An Idea of the Proof of the Main Result: Fitted Descent

- Combine Schmidt games with Markov partitions.
An Idea of the Proof of the Main Result: Fitted Descent

- Combine Schmidt games with Markov partitions.
- A Schmidt game gives us a nested sequence of closed shrinking balls over which we have partial control.
An Idea of the Proof of the Main Result: Fitted Descent

- Combine Schmidt games with Markov partitions.
- A Schmidt game gives us a nested sequence of closed shrinking balls over which we have partial control.
- The infinite sequences α that do not have some finite sequence as substring are created recursively from longer and longer finite sequences α^k.
An Idea of the Proof of the Main Result: Fitted Descent

- Combine Schmidt games with Markov partitions.
- A Schmidt game gives us a nested sequence of closed shrinking balls over which we have partial control.
- The infinite sequences α that do not have some finite sequence as substring are created recursively from longer and longer finite sequences α^k.
- These α^k correspond to a sequence of closed nested shrinking sets, $R_{\alpha^1} \supset R_{\alpha^2} \supset \cdots \supset \{R_\alpha\}$.
An Idea of the Proof of the Main Result: Fitted Descent

- Combine Schmidt games with Markov partitions.
- A Schmidt game gives us a nested sequence of closed shrinking balls over which we have partial control.
- The infinite sequences α that do not have some finite sequence as substring are created recursively from longer and longer finite sequences α^k.
- These α^k correspond to a sequence of closed nested shrinking sets, $R_{\alpha_1} \supset R_{\alpha_2} \supset \cdots \supset \{R_\alpha\}$.
- The technical lemma gives us partial control over this recursive process.
An Idea of the Proof of the Main Result: Fitted Descent

- Combine Schmidt games with Markov partitions.
- A Schmidt game gives us a nested sequence of closed shrinking balls over which we have partial control.
- The infinite sequences α that do not have some finite sequence as substring are created recursively from longer and longer finite sequences α^k. These α^k correspond to a sequence of closed nested shrinking sets, $R_{\alpha^1} \supset R_{\alpha^2} \supset \cdots \supset \{R_\alpha\}$.
- The technical lemma gives us partial control over this recursive process.
- Using the two forms of partial control, we carefully fit the two nested sequences together.□
Supplemental
Examples of Expanding Maps

- The simplest one: Take the circle $S^1 = \mathbb{R}/\mathbb{Z}$.
Examples of Expanding Maps

- The simplest one: Take the circle $S^1 = \mathbb{R}/\mathbb{Z}$. Consider

 $$T(x) = 2x \mod 1.$$
Examples of Expanding Maps

- The simplest one: Take the circle $S^1 = \mathbb{R}/\mathbb{Z}$. Consider
 \[T(x) = 2x \mod 1. \]

- Now let $f : S^1 \to S^1$ be a nonlinear C^2-map such as
 \[f(x) = \sin(2\pi x). \]
Examples of Expanding Maps

- The simplest one: Take the circle $S^1 = \mathbb{R}/\mathbb{Z}$. Consider
 \[T(x) = 2x \mod 1. \]

- Now let $f : S^1 \to S^1$ be a nonlinear C^2-map such as
 \[f(x) = \sin(2\pi x). \]
 Let ε be very small.
Examples of Expanding Maps

- The simplest one: Take the circle $S^1 = \mathbb{R}/\mathbb{Z}$. Consider
 \[T(x) = 2x \mod 1. \]

- Now let $f : S^1 \to S^1$ be a nonlinear C^2-map such as
 \[f(x) = \sin(2\pi x). \]

 Let ε be very small. Then
 \[T(x) = 2x + \varepsilon f(x) \mod 1 \]

 is nonlinear C^2-expanding.
Examples of Expanding Maps

- The simplest one: Take the circle $S^1 = \mathbb{R}/\mathbb{Z}$. Consider

 $$T(x) = 2x \mod 1.$$

- Now let $f : S^1 \to S^1$ be a nonlinear C^2-map such as

 $$f(x) = \sin(2\pi x).$$

 Let ε be very small. Then

 $$T(x) = 2x + \varepsilon f(x) \mod 1$$

 is nonlinear C^2-expanding.

- The listener can build similar examples on higher dimensional tori.
Examples of Expanding Maps

- The simplest one: Take the circle $S^1 = \mathbb{R}/\mathbb{Z}$. Consider
 $$T(x) = 2x \mod 1.$$

- Now let $f : S^1 \to S^1$ be a nonlinear C^2-map such as
 $$f(x) = \sin(2\pi x).$$

 Let ε be very small. Then
 $$T(x) = 2x + \varepsilon f(x) \mod 1$$

 is nonlinear C^2-expanding.

- The listener can build similar examples on higher dimensional tori.

Some Basic Concepts in Dynamical Systems

- Start with a set M, a σ-algebra \mathcal{B}_M, and a measure

$$\mu : \mathcal{B}_M \to [0, \infty].$$
Some Basic Concepts in Dynamical Systems

- Start with a set M, a σ-algebra \mathcal{B}_M, and a measure
 \[\mu : \mathcal{B}_M \rightarrow [0, \infty] \].

- **Probability** measure means that $\mu(M) = 1$.
Some Basic Concepts in Dynamical Systems

- Start with a set M, a σ-algebra \mathcal{B}_M, and a measure

$$\mu : \mathcal{B}_M \rightarrow [0, \infty].$$

- **Probability** measure means that $\mu(M) = 1$.
- A **dynamical system** is $(M, \mathcal{B}_M, \mu, T)$ where $T : M \rightarrow M$.
Some Basic Concepts in Dynamical Systems

- Start with a set \(M \), a \(\sigma \)-algebra \(\mathcal{B}_M \), and a measure

\[
\mu : \mathcal{B}_M \to [0, \infty].
\]

- **Probability** measure means that \(\mu(M) = 1 \).
- A **dynamical system** is \((M, \mathcal{B}_M, \mu, T)\) where \(T : M \to M \).
- \(\mu \) is **\(T \)-invariant** (or equivalently, \(T \) is \(\mu \)-preserving) if

\[
\mu(T^{-1}(B)) = \mu(B)
\]

for every \(B \in \mathcal{B}_M \).
Some Basic Concepts in Dynamical Systems

- Start with a set M, a σ-algebra \mathcal{B}_M, and a measure
 \[\mu : \mathcal{B}_M \rightarrow [0, \infty]. \]

- **Probability** measure means that $\mu(M) = 1$.
- A **dynamical system** is $(M, \mathcal{B}_M, \mu, T)$ where $T : M \rightarrow M$.
- μ is **T-invariant** (or equivalently, T is μ-preserving) if $\mu(T^{-1}(B)) = \mu(B)$ for every $B \in \mathcal{B}_M$.
- $B \in \mathcal{B}_M$ is **essentially T-invariant** if $\mu(T^{-1}(B) \Delta B) = 0$.
Some Basic Concepts in Dynamical Systems

- Start with a set M, a σ-algebra \mathcal{B}_M, and a measure

$$\mu : \mathcal{B}_M \rightarrow [0, \infty].$$

- **Probability** measure means that $\mu(M) = 1$.
- A **dynamical system** is $(M, \mathcal{B}_M, \mu, T)$ where $T : M \rightarrow M$.
- μ is **T-invariant** (or equivalently, T is μ-preserving) if $\mu(T^{-1}(B)) = \mu(B)$ for every $B \in \mathcal{B}_M$.
- $B \in \mathcal{B}_M$ is **essentially T-invariant** if $\mu(T^{-1}(B)\Delta B) = 0$.
 - Example. $B \in \mathcal{B}_M$ such that $\mu(B) < \infty$ and $T(B) \subset B$.
Some Basic Concepts in Dynamical Systems

- Start with a set M, a σ-algebra \mathcal{B}_M, and a measure

$$\mu : \mathcal{B}_M \rightarrow [0, \infty].$$

- **Probability** measure means that $\mu(M) = 1$.
- A dynamical system is $(M, \mathcal{B}_M, \mu, T)$ where $T : M \rightarrow M$.
- μ is *T-invariant* (or equivalently, T is μ-preserving) if

$$\mu(T^{-1}(B)) = \mu(B)$$

for every $B \in \mathcal{B}_M$.
- $B \in \mathcal{B}_M$ is essentially *T-invariant* if

$$\mu(T^{-1}(B) \Delta B) = 0.$$
 - Example. $B \in \mathcal{B}_M$ such that $\mu(B) < \infty$ and $T(B) \subset B$.
- A measure-preserving dynamical system is **ergodic** (for μ) if every essentially T-invariant subset is null or conull.
Theorem (BET)

If $f : X \to X$ is an ergodic μ-preserving map, $\mu(X) = 1$, and $\varphi \in L_1(X)$, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x)) = \int_X \varphi \, d\mu$$

for μ-a.e. x.
Theorem (BET)

If $f : X \to X$ is an ergodic μ-preserving map, $\mu(X) = 1$, and $\varphi \in L_1(X)$, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x)) = \int_X \varphi \, d\mu$$

for μ-a.e. x.

If φ is the characteristic function of an open set U in M, BET implies the points that miss U have zero measure.
Theorem (BET)

If \(f : X \rightarrow X \) is an ergodic \(\mu \)-preserving map, \(\mu(X) = 1 \), and \(\varphi \in L_1(X) \), then

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi(f^k(x)) = \int_X \varphi \, d\mu
\]

for \(\mu \)-a.e. \(x \).

- If \(\varphi \) is the characteristic function of an open set \(U \) in \(M \), BET implies the points that miss \(U \) have zero measure.
- Our \(M \) is second countable, thus \(\sigma(A) = 0 \).
Hausdorff dimension (HD) is a way to measure the size of a set A in a metric space.
Hausdorff dimension (HD) is a way to measure the size of a set A in a metric space.

Let $\alpha > 0$ and $d > 0$.

HD(A) is the greatest lower bound of all α for which $m^\alpha d(A) = 0$.
Hausdorff dimension (HD) is a way to measure the size of a set \(A \) in a metric space.

Let \(\alpha > 0 \) and \(d > 0 \).

Let \(m_d^\alpha(A) \) be the greatest lower bound of all sums

\[
\sum_{n=0}^{\infty} \operatorname{diam}(B_n)^\alpha
\]

over all countable coverings of \(A \) by sets \(\{B_n\} \) with diameter \(< d \).
Hausdorff dimension (HD) is a way to measure the size of a set A in a metric space.

Let $\alpha > 0$ and $d > 0$.

Let $m_d^\alpha(A)$ be the greatest lower bound of all sums

$$\sum_{n=0}^{\infty} \text{diam}(B_n)^\alpha$$

over all countable coverings of A by sets $\{B_n\}$ with diameter $< d$.

Let

$$m^\alpha(A) = \lim_{d \to 0} m_d^\alpha(A).$$
Hausdorff dimension (HD) is a way to measure the size of a set A in a metric space.

Let $\alpha > 0$ and $d > 0$.

Let $m^\alpha_d(A)$ be the greatest lower bound of all sums

$$\sum_{n=0}^{\infty} \text{diam}(B_n)^\alpha$$

over all countable coverings of A by sets $\{B_n\}$ with diameter $< d$.

Let

$$m^\alpha(A) = \lim_{d \to 0} m^\alpha_d(A).$$

$HD(A)$ is the greatest lower bound of all α for which $m^\alpha(A) = 0$.

J. Tseng (Brandeis University) Schmidt Games and Markov Partitions Penn State 19 October 2007 23 / 23