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Abstract

This paper addresses the role of non-binding goals to attenuate time inconsistency.
Agents have linear reference-dependent preferences and endogenously set a goal that
is the reference point. They face an infinite horizon, optimal stopping problem in
continuous time, where there exists an option value of waiting due to uncertainty.
Goal-setting attenuates the time-inconsistent agent’s tendency to stop too early, and
may even lead an agent to wait longer than the first best. In particular, reference
dependence is strictly worse for a time-consistent agent. Notably, none of the effects of
goal-setting require any form of loss aversion. The model extends to social comparisons,
in which each agent measures his outcome against his expectation of his peers outcome.
In a heterogeneous group where agents have differing degrees of self-control, comparison
to increasingly patient peers induces increasingly patient behavior. Nonetheless, every
agent prefers to compare himself to a peer with the lowest degree of self-control possible,
regardless of the severity of his own self-control problem.
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1 Introduction

Personal development is a burgeoning, multi-billion dollar industry that focuses on self-

improvement on a variety of levels, from career aspirations to lifestyle choices to spiritual

well-being. In response to consumer demand, this market offers books, motivational speakers,

and personal coaching, as well as innumerable weight-loss programs. Institutional demand

has resulted in consulting and employee development programs whose purpose is to raise

productivity in the workplace. A central tenet of this industry is that goal-setting is a

vital instrument for improving any aspect of life. For example, the “S(pecific) M(easurable)

A(ttainable) R(elevant) T(imely) Goals” mnemonic is ubiquitous in project management,

education, and self-help programs.1 This prescription is supported by extensive empirical

evidence that non-binding goals tend to increase effort, attention, and persistence (Klein

1991, Latham and Locke 1991, Locke and Latham 2002), and that satisfaction is tied to

achievement relative to such a goal, not just final outcomes (Mento, Locke and Klein 1992).

Although much attention has been paid to the problem of present-biased preferences and

intrapersonal conflict by individual decision makers, the role of self-set goals in attenuating

the self-control problem has been relatively unexplored by economists thus far.2 In standard

economic models, only binding goals, involving external enforcement of punishment and

rewards or pre-commitment, can affect motivation and behavior. For example, an employer

can motivate a worker’s effort choice by prescribing goals if the worker is evaluated and

compensated accordingly. Present-biased agents can also enforce personal motivation by

using binding precommitments or externally enforced contracts.3

However, the prevalence of non-binding goal-setting, and the success of personal develop-

ment, strongly suggests that less drastic measures may be successful regulatory mechanisms.

For example, dieters often set weight targets, and writers set self-imposed page targets and

deadlines.4 Individuals may also set goals for themselves in situations where there exists an

option value of waiting due to uncertainty. A student may thus continue his education to

achieve a target level of starting salary upon graduation. A person trying to save may set a

target level of accumulated wealth upon retirement. In the marriage market, an individual

may specify a standard of quality for a prospective spouse to avoid settling too soon.

1There exist many variations on this theme, which is generally attributed to Drucker (1954).
2Bénabou and Tirole (2004) develop a theory of self-enforcing personal rules, operating through self-

reputation. Because agents have imperfect information about their own willpower and imperfect recall, they
can achieve internal commitment out of fear of creating precedents and losing faith in themselves.

3Classic examples include alcoholics who take Antabuse to preclude drinking and gamblers who place
themselves on casino “do not enter” lists.

4Ariely and Wertenbroch (2002) conduct an experiment in which students set binding deadlines for
themselves, since the students were penalized when they were not met.
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In this paper, I propose that a goal provides internal motivation by acting as the ref-

erence point for an agent who possesses reference-dependent preferences. I consider agents

who derive utility from both standard consumption, arising from outcomes, and comparison

utility, derived from the comparison of these outcomes to a self-set goal. At each point in

time, the agent sets a goal based on his expectations about the outcome of future behavior,

which his next “self” will inherit as a reference point in his utility function. In this way,

the agent provides a degree of internal motivation that is desirable if he exhibits time incon-

sistency due to present-biased time preferences. I consider the polar cases of sophistication

and naivete about one’s self-control problem to study the impact of differing expectations

on behavior and welfare.

The economic setting that I consider is an infinite-horizon, optimal stopping problem in

continuous time, where there exists an option value of waiting due to uncertainty. Present-

biasedness leads the agent to stop too early because he undervalues this option relative to his

time-consistent counterpart. In the preceding examples, this means accumulating too little

human capital, retiring with too little wealth, or settling for a mediocre spouse. I show that

if the agent has reference dependent preferences, even of the simplest, linear kind, he can

induce more patient behavior by setting a goal to be evaluated upon stopping, regardless

of whether he is sophisticated or naive. Formally, I solve for the unique stationary Markov

equilibrium of the intrapersonal game and show that greater reference dependence leads to

later exercise of the option. The presence of a goal increases the agent’s incentive to wait

because he wishes to avoid incurring comparative disutility from falling short of it. For

any degree of present-biasedness, there exists a level of reference dependence such that a

sophisticated agent can achieve the first best from an ex ante perspective. On the other

hand, too much reference dependence causes him to wait too long. In particular, reference

dependence always decreases the welfare of a time-consistent agent because it causes him to

wait longer than the first best, by distorting his incentives at the margin. Thus, goal setting

per se can itself be a source of intrapersonal conflict. Another key result, which stands in

contrast to previous literature and conjectures, is that goal-setting does not require any form

of loss aversion or curvature in the comparison utility function to regulate behavior.

Next, I study the optimal goal when it represents an individual’s aspiration, rather than

an expectation about what he will attain. When the goal is divorced from expectations, there

exists a trade-off between consumption and comparison utility. I find that the agent must be

sufficiently present-biased and exhibit diminishing sensitivity to gains to set a non-degenerate

aspiration. In this case, more present-biased agents set higher aspirational goals.

Finally, I extend the model to social comparisons. In addition to, or instead of, engaging

in individual goal-setting, an agent may also look to a peer or role model as a source of
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comparison. It has long been recognized that people derive utility from comparing their

own outcomes, such as wealth, education, and consumption, against those of their peers

(Veblen 1953, Duesenberry 1949, Frank 1985). Furthermore, Bandura and Jourden (1991)

find that social comparisons affect both individual goal-setting and the interpretation of

personal outcomes. I assume that agents are fully aware of their own personal characteristics,

but care about “keeping up with the Joneses.” Since they are rational and fully informed

about one another’s characteristics, they must again hold correct expectations regarding

everyone’s outcomes. I show that comparing oneself with any peer improves patience over

having no goal at all, even if the peer has an even more severe self-control problem. An

agent’s patience increases with his peer’s degree of self-control, since it effectively sets a

higher standard to be met, generating a stronger incentive to wait for a higher stopping value;

there also exists a feedback effect between two peers engaged in mutual social comparison.

Nonetheless, every agent prefers to compare himself to a peer with the lowest degree of

self-control possible, regardless of the severity of his own self-control problem.

The paper proceeds as follows. Section 2 links this paper to related lines of research.

Section 3 describes the model. Section 4 derives and characterizes the stationary Markov

equilibrium and discusses the welfare implications of goal-setting when the agent is sophis-

ticated. Section 5 derives the equilibrium when the agent is naive and discusses the welfare

implications in comparison to the sophisticate. Section 6 considers the optimal choice of

aspirational goals. Section 7 extends the model to include social comparisons. Section 8

concludes. Proofs are gathered in the Appendix.

2 Related Literature

This paper lies at the intersection of several lines of research. It links the work on reference

dependence with that on self-control, which have each been studied quite separately, by

considering the role of reference dependence preferences as an instrument to countervail a

self-control problem. It also relates to work on peer effects and social comparisons. Finally,

it analyzes behavior and welfare in the context of optimal stopping under uncertainty.

Goal-setting theory posits that goals serve as a reference standard in a cognitive com-

parison process of self-evaluation and satisfaction (Latham and Locke 1991, Locke and

Latham 2002, Bandura 1989). Heath, Larrick and Wu (1999) explicitly argue that a goal

acts as the reference point in the prospect theory (Kahneman and Tversky 1979) value func-

tion, while Loewenstein (2007) discusses goal-setting in the context of mountaineering, but

neither formally endogenizes goals. In parallel and independent work, Suvorov and van de

Ven (2008) and Koch and Nafziger (2008, 2009) also propose models of goals as reference
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points to remedy self-control. While sharing a similar concept, the papers are quite comple-

mentary. Both Suvorov and van de Ven (2008) and Koch and Nafziger (2008, 2009) consider

a three-period problem where costly effort on a task results in a delayed benefit and a so-

phisticated, quasi-hyperbolic agent sets a goal regarding both effort and the task benefit.

There, loss aversion is required to affect behavior and outcome uncertainty plays a key role.

In contrast to related work on reference-dependent preferences, including Koch and Nafziger

(2008, 2009), Suvorov and van de Ven (2008), and Kőszegi and Rabin (2006, 2009), none of

my results require either loss aversion or uncertainty over final payoffs.

Kőszegi and Rabin (2006) endogenize reference point formation through rational expec-

tations. This framework has been extended to a dynamic setting where agents derive utility

from the revision of beliefs (Kőszegi and Rabin 2009, Matthey and Dwenger 2007, Matthey

2008). Abeler, Falk, Goette and Huffman (2009) and Ericson and Fuster (2010) find ex-

perimental support for expectations as endogenous reference points. There is also empirical

evidence, though debated, that people use reference points in the form of income targets

(Camerer, Babcock, Loewenstein and Thaler 1997, Farber 2005, Farber 2008, Crawford and

Meng 2008, Fehr and Goette 2007, Goette and Huffman 2005).

The concept of intrapersonal conflict due to intertemporal differences in preferences

within the self was first studied by Strotz (1956) and Schelling (1984), and more broadly

developed by Ainslie (1992) and Laibson (1997). Self-control can be improved through self-

imposed, binding commitments (Brocas and Carrillo 2005, Carrillo 2005, Gul and Pesendorfer

2001, Bisin and Hyndman 2009). Bénabou and Tirole (2004) develop a theory of internal

regulation through self-enforcing personal rules based on a mechanism of self-reputation.

The intrapersonal problem with time inconsistent preferences shares clear parallels with a

principal-agent problem with moral hazard, where optimal compensation schemes have been

studied (Ou-Yang 2003, Kadan and Swinkels 2008). However, belief constraints and welfare

interpretations can differ markedly between the two settings.

There exists an extensive literature on social comparison and peer effects. When individ-

uals care about status, this concern can lead to conformity (Bernheim 1994) or conspicuous

consumption (Bagwell and Bernheim 1996). DeMarzo, Kaniel and Kremer (2008) consider

the role of relative wealth concerns in the formation of financial bubbles. Austen-Smith

and Fryer (2005) study the influence of cultural norms on school performance. Battaglini,

Bénabou and Tirole (2005) endogenize peer group effects when individuals have imperfect

information about their self-control problem, but can learn from observing others. Falk

and Knell (2004) consider endogenous reference standards in a static, reduced-form social

comparison model. Rayo and Becker (2007) propose an evolutionary model of reference

dependence and social comparison as optimal mechanisms to maximize fitness.
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The real options approach to investment under uncertainty was pioneered by Brennan

and Schwartz (1985) and McDonald and Siegel (1986), and has been built upon extensively

(Dixit 1993, Dixit and Pindyck 1994). Grenadier and Wang (2007) extend this framework

to model the investment decisions of hyperbolic entrepreneurs, while Miao (2008) studies

agents with Gul and Pesendorfer’s (2001) temptation utility.

3 The Model

I first describe the economic environment, followed by the agent’s preferences, which may in-

clude both hyperbolic discounting and reference dependence. I focus on an optimal stopping

problem, where the self-control problem arises purely from the tension between waiting and

stopping today. This framework applies to many economic situations, such as those described

above - the student pursuing his education, the person saving a nest egg for retirement, and

the person searching for a spouse.5

3.1 Optimal Stopping

I consider the standard, continuous-time optimal stopping problem, in which an infinitely

lived agent has a non-tradeable option to invest in a project.6 The problem can also be

interpreted as a project termination decision - the agent currently holds a project that has

a fixed cost of disinvesting and an uncertain payoff or resale value.

At any time t, the agent knows the current value of the project’s payoff xt ∈ [0,∞)

and decides whether to stop or to wait. In the latter case, the project’s payoff evolves as a

geometric Brownian motion:

dxt = µxtdt+ σxtdz, (1)

where z is a standard Wiener process, µ the average growth rate of xt, and σ its standard

deviation per unit time. At the stopping time t, the project yields the lump-sum terminal

payoff xt. The cost of stopping at any time is I > 0, and is incurred only at the stopping

time.7 Without loss of generality, there is no interim flow payoff, nor any direct cost incurred

prior to stopping. Due to the stochastic nature of the payoff process, there exists an option

value of waiting, in the hope that a higher project value will be realized at a later date.

5For example, a student who is deciding how long to remain in school will incur job search costs when he
stops, and will generally obtain a better job outcome from staying in school longer.

6Thus, it has the same structure as an American stock option, where an investor holds an option that
does not expire and decides when to strike.

7Thus, there is no intertemporal separation of costs and benefit. Separating the costs and benefits of
stopping certainly exacerbates the self-control problem, but is not necessary to produce intrapersonal conflict.
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A more realistic setting might include an observable constant or stochastic flow payoff.

In the previous examples, a student might incur some small positive or negative flow payoff

from going to school; saving might induce negative flows due to decreased consumption

before retirement; and a person searching for a spouse might incur negative flow utility until

he finds a match. Such an inclusion has no qualitative effect on the results8, so I exclude

flow payoffs henceforth.

3.2 Time Preferences

The agent may have present-biased preferences, creating a self-control problem. I model this

present-biasedness by following Harris and Laibson (2004), who formulate a continuous-time

version of quasi-hyperbolic preferences. At any time s, an agent’s preferences are divided

into a “present,” which lasts from time s to time s + τs, and a “future,” which arrives at

time s+ τs and persists forever. The length of the present, τs, is stochastic and distributed

exponentially with parameter λ ∈ [0,∞). While the agent knows the distribution governing

the length of the present, he is unaware of when the future will arrive ex ante.9 When self s’s

future arrives at time s+τs, he is replaced by a new self who takes control of decision-making.

Likewise, the preferences of this self s + τs are divided into a “present” of length τs+τs
and

a “future” that arrives at time (s + τs) + τs+τs
. Hence, when each self’s “future” arrives, it

“dies” and is replaced by a new self.

Each self s has a stochastic discount function Ds(t):

Ds(t) =

{

e−ρ(t−s) if t ∈ [s, s+ τs)

βe−ρ(t−s) if t ∈ [s+ τs,∞).
(2)

where β ∈ [0, 1] and ρ > 0.10 To ensure that the agent never finds it optimal to wait forever

in the optimal stopping problem, let ρ > µ. The function Ds(t) decays exponentially at

the rate ρ throughout, but drops discontinuously at time s + τs to a fraction β of its prior

level. Here, there are two parameters that determine the extent of the self-control problem.

First, the parameter β retains the same role it plays in the discrete-time version, measuring

8More precisely, I can include a constant flow payoff y ∈ (y,∞), where y < 0 is the minimum flow payoff
such that the agent stops immediately for any xt ≥ 0. Likewise, incorporating an observable stochastic flow
payoff that follows a known process leads to the same qualitative results.

9The assumption of a stochastic arrival time of the future allows me to obtain a stationary solution to the
stopping problem, but is not necessary to obtain qualitative results. One can obtain stationarity by imposing
a deterministic arrival time instead, though comparative statics with respect to differing time preferences
would be less general.

10The stochastic discount function Ds(t) described by (2) is analogous to the discrete-time, quasi-
hyperbolic version, as seen by substituting δ = e−ρ.
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how much the future is valued relative to the present. Second, the parameter λ determines

the arrival rate of the future, and thus how often preferences change. In particular, when

λ→ ∞ and β < 1, the agent prefers “instantaneous gratification” (Harris and Laibson 2004),

discretely discounting all moments beyond the current instant. When β = 1 or λ = 0, the

preferences described by Equation (2) are equivalent to those of an exponential discounter

with discount rate ρ.

3.3 Goals

The agent’s preferences are assumed to be reference-dependent: his utility is composed of

both consumption utility, which is based on absolute levels, and of comparison utility, which

is concerned with gains and losses relative to a reference point, which here corresponds to

his goal. There is much evidence that people react to goals in ways consistent with prospect

theory, such as reporting less or more satisfaction with the same outcome due to differing goal

levels or prior expectations (Heath et al. 1999, Medvec, Madey and Gilovich 1995, McGraw,

Mellers and Tetlock 2005). Equivalently, an agent may incur non-monetary costs and benefits

from performance relative to his goal, such as embarrassment and pride.

In optimal stopping with zero flow payoffs, the agent’s consumption utility upon stopping

at time t is simply his net terminal payoff, xt − I. As in Kőszegi and Rabin (2006, 2009),

the agent’s comparison utility is closely related to his consumption utility, and is derived by

comparing his net terminal payoff at time t against his goal at that time, rt.
11 In the language

of personal development, the goal is thus “Specific,” i.e. it is well-defined, and “Measurable,”

i.e. it can be clearly evaluated. His comparison utility increases with the degree to which

he exceeds his goal and decreases with the degree to which he falls short of it, a property

consistent with empirical evidence (Mento et al. 1992). A key difference is that comparison

utility here is simply a linear function, given by

η(xt − I − rt), (3)

where η ≥ 0, implying that the agent exhibits neither loss aversion nor diminishing sensitivity

to gains and losses. Although the absence of these two features deviates from Kahneman

and Tversky’s (1979) value function, it will demonstrate that neither is necessary for goals

to affect behavior in a meaningful way. Indeed, one of the main points of the paper is that

the effects of goal-setting can be understood completely independently of loss aversion.

11Alternatively, he could compare his gross terminal payoff xt against his goal for the gross terminal payoff
at that time, or separately compare the terminal payoff and cost using this comparison utility function, and
the results would be unchanged.
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The parameter η can be interpreted as the degree to which the agent cares about, or

pays attention to, the difference between his outcome and his goal. It can also be seen as

a measure of salience or “goal commitment,” which is broadly defined in psychology as the

degree to which a person is determined to achieve a goal. A central concept of goal-setting

theory is that goal difficulty has little effect on behavior if commitment is not present (Locke

and Latham 2002).12 The absence of goal commitment (η = 0) corresponds to the absence

of reference dependent preferences, when the existence of a goal has no effect on utility, and

consequently, his behavior. We can also interpret η = 0 as the case in which the agent

has no goal or an ill-defined goal. Without a well-defined basis against which to make a

comparison, it seems natural to believe that an agent cannot incur comparison utility in this

case. Such an interpretation accords with results regarding the ineffectiveness of vague goals

on motivation and effort (Latham and Locke 1991, Mento et al. 1992). Here, I treat η as a

fixed parameter and analyze the agent’s subsequent behavior and welfare. The demand for

personal development services and products can be interpreted as an attempt by individuals

to improve self-regulation and welfare by changing η.13 This interpretation is not inconsistent

with this assumption, insofar as an agent must determine how he would fare for any given

η to determine the value of attempting to change his initial η. In this vein, I later consider

the agent’s preferences over η from an ex-ante perspective.

I assume that the agent only incurs comparison utility when he stops and receives the net

terminal payoff. Although he is aware that he will incur comparison utility upon stopping,

he does not incur any while waiting. This assumption accords with the notion from mental

accounting that individuals do not necessarily “feel” gains and losses until they have been

realized (Thaler 1999).14

For simplicity, overall utility is taken to be additively separable in its two components.

The agent’s total utility at the stopping time is thus

xt − I + η(xt − I − rt). (4)

At any time s, the goal rs is taken as given by self s and cannot be changed during his entire

“lifetime,” having been set by his previous self. Similarly, the goal that self s + τs inherits,

12Similarly, McClelland (1962) defines those high in “achievement motivation,” or n Ach, as those derive
satisfaction from setting achievable and measurable goals for themselves.

13For example, the suggestively titled “The Magic Lamp: Goal Setting for People Who Hate Setting Goals”
(Ellis 1998) purports to help individuals improve their goal commitment. The inside flap declares, “The

Magic Lamp . . . [combines] the methods of goal setting with the magic of making your wishes come true.”
Despite the extravagance of the claim, it suggests that goal commitment is necessary and that individuals
may be able to change their existing goal commitment with some effort.

14The disposition effect, where stockholders are reluctant to sell losing stocks, and hence realize losses
relative to their original buying prices, is consistent with this idea (Odean 1998, Barberis and Xiong 2008).
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denoted rs+τs
, is set by self s, where τs, the lifespan of self s, is stochastically determined

and a priori unknown to self s.

The assumption that the agent cannot change an inherited goal implies that it can provide

a degree of internal motivation to his (present-biased) future selves. Such “goal stickiness”

is necessary: if the agent could simultaneously make the stopping decision and set a goal for

himself for the current period, this goal would have no effect on his current behavior, since

his present bias implies that he has no desire to behave more patiently today. He would also

have no means by which to impose ex-ante preferences over time-consistent behavior.15

3.4 Expectations

In setting the goal, each self forms an expectation of his immediate “descendant”’s payoff

if he does not stop himself. His descendant inherits this expectation and compares his

own final payoff against this inherited goal if he stops.16 The goal is clearly “Relevant”

his stopping problem. I consider the two polar cases of sophistication and naivete, in the

manner of O’Donoghue and Rabin (1999), to study the impact of differing expectations

on behavior and welfare. In contrast to the case without reference dependent preferences,

holding incorrect expectations directly affects the agent’s comparison utility through his goal

choice. However, I assume that his goals must be consistent with the outcome he expects to

achieve. Because he observes the current project payoff perfectly, he holds no uncertainty

over the anticipated outcome upon stopping ex ante, though such beliefs may or may not

be correct. If the agent is sophisticated and correctly anticipates his actions, each self must

have rational expectations about goal achievement. That is, the agent cannot consistently

fool himself about what he can or cannot achieve - he must set goals that are realistic.17

Likewise, if he is naive, so his beliefs regarding future behavior are incorrect, he must set

objectives that he perceives to be realistic. That is, the agent’s goal must be “Attainable.”

Note, however, that these assumptions do not necessarily imply that each self must have the

15Alternatively, we could assume that the agent can change an inherited goal at some cost. Thus imposing
zero or infinite costs corresponds to no or maximal “goal stickiness,” respectively. While relaxing “goal
stickiness” would certainly weaken the effects of a goal, clearly the qualitative findings and comparative
statics would still hold as long as it exists, without offering additional insights.

16This formulation is consistent with Bandura’s (1989) theory that goals serve as both targets to strive
for and standards by which outcomes are evaluated, as well as empirical evidence that the degree of self-
satisfaction varies depending on goal level. That is, two individuals who attain the same outcome will be
unsatisfied or satisfied depending on whether their goals were higher or lower than that outcome, respectively
(Mento et al. 1992).

17Based on lab and field experiments, Latham and Locke (1991) conclude that goal choice is an integration
of what one wants and what one believes is possible, suggesting that goals are realistic. Carrillo and De-
watripont (2008) also discuss the tension between foresight and the credibility of promises in intrapersonal
games, arguing that agents cannot simultaneously anticipate future behavior and fool future selves.
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same goal. Each self cannot change the goal that he inherits, but is free to choose a different

one for his future self if he so desires, as long as that he perceives, whether accurately or

not, that it is realistic.

Because each self inherits his goal from his predecessor, it is necessary to specify the

source of the agent’s goal when he is first able to stop the project. I assume that there exists

a “self 0,” an ex-ante self, who learns that the stopping opportunity will present itself and

forms an expectation of how he will behave once the option becomes available for exercise.

Given such preferences, at any time s the agent chooses the stopping rule that determines

a (random) stopping time t to maximize the expected present value of his overall utility:

max
t
Es{Ds(t)[xt − I + η(xt − I − rt)]}, (5)

where Es denotes the conditional expectation at time s and Ds(t) is given by Equation (2).

When the agent has hyperbolic time preferences, he is prone to stopping too early because

he undervalues the future, and thus the option value of waiting (Grenadier and Wang 2007).

The question of interest is to what extent setting goals can attenuate this problem.

4 Sophistication

When the agent is quasi-hyperbolic and sophisticated, in that he is fully aware of his present-

biasedness, the problem takes on the nature of a dynamic game between successive selves,

and there could exist equilibria in which each self chooses a different stopping strategy. Here,

I focus on the most natural equilibrium, namely a stationary Markov equilibrium in which

each self employs the same threshold strategy. In the Appendix, I verify that the stationary

stopping rule is in fact optimal.

Since the geometric Brownian motion is continuous, the project value cannot jump dis-

continuously from one moment in time to the next. This implies that the sophisticated agent

has no uncertainty over the net terminal payoff from stopping: if every self uses the same

threshold x, then xt = x, so the expected net terminal payoff is x− I. The source of ex ante

uncertainty is the timing of this stopping - that is, when he chooses to stop. Furthermore,

if a self-set goal must be realistic, every self will inherit, set, and meet the same goal in a

stationary equilibrium, so that rt = x− I.

To construct the equilibrium, I solve the intrapersonal game backwards.18 Each self

anticipates that his descendants will employ thresholds that maximize their own current

18I derive the solution in the same manner as Grenadier and Wang (2007), but with the inclusion of a final
goal-dependent payoff.
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benefit of waiting, so they will face a problem identical to his own. A stationary solution is

thus a fixed point such that current and future selves employ a common threshold.

Because each self controls the stopping decision in the present, and cares about - but

cannot directly control - those of the future, two value functions are required to describe the

intrapersonal problem. Let all descendants inherit the goal r̂. Then the Bellman equation

for the continuation value function v(x, r̂) is

v(x, r̂) = max{x− I + η(x− I − r̂), e−ρdtE[v(x+ dx, r̂)]}. (6)

This continuation value function describes each self s’s consideration of future selves, follow-

ing the random arrival of the future at time τs. Beyond time τs, he discounts future utility

flows exponentially. Hence, the continuation value function also describes how the current

self prefers future selves to evaluate payoff streams - by discounting exponentially. Thus,

v describes the agent’s preferences over the future from an ex ante perspective, including

those of self 0. If the agent were time consistent, then all selves’ preferences would coincide

and he would choose the optimal strategy to maximize v. Given the current project value

x and his inherited goal r̂, he would thus choose the maximum of the observed total utility

from stopping and the expected (exponentially) discounted value of waiting for a higher

realization of x.

However, if the agent is present-biased (β < 1), he maximizes a different value function

that overweights the present relative to the future. Denoting the goal inherited by the current

self by r, the Bellman equation that describes this current value function w(x, r) is

w(x, r) = max{x−I+η(x−I−r), (1−e−λdt)e−ρdtβE[v(x+dx, r̂)]+(e−λdt)e−ρdtE[w(x+dx, r)]}.

(7)

Given the current x and an inherited goal r, and anticipating that his future selves will

inherit r̂ (with the knowledge that he sets r̂ for his immediate descendant), the current self

chooses the maximum of the current total utility from stopping and the expected discounted

value of waiting for a higher realization of x, where this discounting discontinuously drops by

the factor β upon the random arrival of the future. A future self arrives in the next instant dt

with probability 1− e−λdt, while the current self remains in control with probability e−λdt.19

19Alternatively, consider a parent who derives utility from the payoff stream of his descendants. The
continuation value v describes his evaluation of the stream of his descendants’ utilities - he discounts them
exponentially. Thus he prefers that every descendant evaluate the payoff streams from his entire family
line, including his own, exponentially. When his child becomes the decision-maker, he discounts his own
descendants’ utilities exponentially, just as his parent did. But he also underweights the stream of his
descendants’ utilities relative to his own by the factor β, in disagreement with his parent’s wishes. Thus, w
describes the child’s evaluation of the payoff stream from his entire family line, including his own.
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4.1 Ex Ante Preferences

To construct the continuation value function v(x, r̂), I first suppose that all future selves

inherit goal r̂ and employ a threshold x̂ such that they wait if x < x̂ and stop if x ≥ x̂. By

continuity of the geometric Brownian motion, there is zero probability that the project value

xt can jump discontinuously from the “wait” region (x < x̂) to the “stop” region (x ≥ x̂)

from one moment to the next. Therefore, I can construct v(x, r̂) by considering its behavior

in each region separately, then joining them using appropriate boundary conditions.

Using the threshold strategy implies that the value of Equation (6) in the stop region

(x ≥ x̂) is simply given by x− I + η(x− I − r̂). In the wait region, standard results imply

that v(x, r̂) must obey the following linear differential equation:

ρv(x, r̂) = µx(
∂v

∂x
) +

1

2
σ2x2(

∂2v

∂x2
) if x < x̂. (8)

By definition of the geometric Brownian x, x = 0 is an absorbing barrier. The continuation

value function must also be continuous at the threshold x̂ between the waiting and stopping

regions. Therefore, the relevant boundary conditions for v are:20

Boundary: v(0, r̂) = 0, (9)

Value Matching: v(x̂, r̂) = x̂− I + η(x̂− I − r̂). (10)

Because the stopping decision is only made by current selves, and never by future selves, no

optimality condition applies to v(x, r̂) if the agent is present-biased.

Combining Equation (8) with conditions (9) and (10), the continuation value function is

v(x, r̂) =

{

[(x̂− I) + η(x̂− I − r̂)](x
x̂
)γ1 if x < x̂

x− I + η(x− I − r̂) if x ≥ x̂,
(11)

where γ1 > 1 is the positive root21 of the quadratic equation

1

2
σ2γ2

1 + (µ−
1

2
σ2)γ1 − ρ = 0, (12)

reflecting the fact that from an ex ante perspective, the agent discounts the future exponen-

tially at the rate ρ.

20The first boundary condition is obtained by noting that given any r̂ ≥ 0, which can be verified in
equilibrium, the agent never stops if x = 0, since he incurs negative overall utility.

21The negative root is ruled out by the boundary condition for x = 0. To see that γ1 > 1, note that σ2 > 0
and the left-hand side of the quadratic is negative when evaluated at γ1 = 0 and γ1 = 1, implying that the
negative root is strictly negative and the positive root is strictly greater than 1 if µ < ρ.
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4.1.1 Benchmark: The Standard Case

In the standard optimal-stopping problem, the agent is time-consistent (β = 1 or λ = 0)

and is not reference dependent (η = 0). His optimal strategy is to use the fixed stopping

threshold x∗: at any time s, he waits if xs < x∗ and stops if xs ≥ x∗. Time consistency

implies that the agent’s preferences are fully described by v, so he chooses x∗ to maximize v.

Thus, the optimality, or smooth pasting, condition applies to the continuation value function

v, so the marginal values of waiting and stopping must be equal at the optimal threshold.

Since η = 0 here, the smooth pasting condition is given by:

Smooth Pasting:
dv

dx
(x∗) = 1. (13)

Solving Equation (8) subject to (13) and barrier absorption and value matching conditions

(9) and (10) when η = 0 allows us to determine the optimal threshold x∗:

x∗ = (
γ1

γ1 − 1
)I, (14)

where γ1 > 1 is again described by Equation (12) because the continuation value is derived by

exponentially discounting the future at the rate ρ in both cases. The standard agent always

waits for a project value that exceeds its direct cost (x∗ > I). Due to the forgone possibility

of higher realizations of x in the future, there exists an opportunity cost of stopping today.

In equilibrium, his value of the option to stop, denoted v∗(x), is given by

v∗(x) =

{

(x∗ − I)( x
x∗

)γ1 if x < x∗

x− I if x ≥ x∗.
(15)

4.2 Present-Biased Preferences

In contrast to the time-consistent case, the present-biased agent maximizes the current value

function w, rather than the continuation value v. Proceeding with the derivation of w(x, r)

analogously, I first suppose that all current selves inherit goal r and employ a threshold

x such that they wait if x < x and stop if x ≥ x. Again, I can construct w(x, r) by

characterizing it in the “wait” and “stop” regions separately, then joining the two regions

through appropriate boundary conditions.

Using the threshold strategy implies that the value of w in the stop region (x ≥ x) is

simply given by x− I + η(x− I − r). In the wait region, standard results imply that w(x, r)
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must obey the following linear differential equation:

ρw(x, r) = λ(βv(x, r̂) − w(x, r)) + µx(
∂w

∂x
) +

1

2
σ2x2(

∂2w

∂x2
) if x < x. (16)

Comparing Equation (16) to Equation (8), the additional term λ(βv(x, r̂) − w(x, r)) is the

expected value of the change in the current value w that occurs through the stochastic arrival

of a transition from the present to the future.

As with v, x = 0 is an absorbing barrier and w must clearly be continuous at the threshold

x between the wait and stop regions. Finally, the smooth pasting condition must apply to w

with respect to x, because the optimal threshold is chosen by the current self to maximize

his current value function w. At x, the marginal value of waiting must equal that of stopping

so that the current self is unwilling to deviate from stopping. Thus, the relevant boundary

conditions for w are

Boundary: w(0, r) = 0, (17)

Value Matching: w(x, r) = x− I + η(x− I − r), (18)

Smooth Pasting:
∂w

∂x
(x, r) = 1 + η. (19)

Because the current self fully anticipates that his future selves will use threshold x̂ given

goal r̂, we can substitute the continuation value function, given by Equation (11) into the

differential Equation (16). Under the assumption that x ≤ x̂, which is satisfied in a stationary

equilibrium, it is the value of v in its wait region that applies to (16). Combining Equation

(16) with (11) and conditions (17), (18), and (19) yields the solution to the optimal threshold

x as a function of current goal r and the conjectured future goals r̂ and thresholds x̂.

4.3 Stationary Equilibrium

In a stationary equilibrium, the sophisticated agent knows that all current and future selves

employ the same threshold, which implies that x = x̂. To make clear the effect of goal-setting

on the optimal stopping rule, I first consider the sophisticate’s stopping threshold given a

fixed goal level (i.e. r = r = r̂), denoted xSE, provided that this goal is set ex ante and does

not change during the stopping decision. Thus, it describes a sophisticate’s response to any

externally set goal, which can differ from the agent’s actual final payoff. Next, I derive the

sophisticate’s stopping rule when his goals are set internally, denoted xSI , and therefore are

required to be met in equilibrium.

15



4.3.1 Exogenous Goals

Letting r = r = r̂ and imposing the fixed point condition that x = x̂ ≡ xSE, the optimal

threshold in response to an externally set goal r ≥ 0, denoted xSE, is

xSE = (
γ

γ − 1
)I + r(

η

1 + η
)(

γ

γ − 1
), with γ ≡ βγ1 + (1 − β)γ2, (20)

where γ2 is the positive root22 of the quadratic equation

1

2
σ2γ2

2 + (µ−
1

2
σ2)γ2 − (ρ+ λ) = 0. (21)

The only difference between the quadratic equation for γ2 and that of γ1 is the presence of

the parameter λ, the hazard rate for the arrival of the future. It is apparent that γ2 ≥ γ ≥ γ1,

with equality only if the future never arrives (λ = 0), i.e. preferences never change. The

parameter γ2 reflects the fact that each self’s expected “lifetime” shortens with λ, while

the degree to which this feature affects the stopping decision is determined by the degree

of present-biasedness, measured by 1 − β. If the agent is time-consistent (γ = γ1) and not

reference-dependent (η = 0), xSE equals x∗, the solution to the standard stopping problem.

Equation (20) makes clear the effect of goal-setting on the optimal stopping rule. The

first term is the agent’s stopping threshold in the absence of reference dependence or a goal:

if η = 0, then xSE = ( γ

γ−1
)I < x∗.23 A hyperbolic discounter without reference dependent

preferences stops earlier than the standard agent, and this impatience is exacerbated as the

present is more overweighted, i.e. as β decreases, and as preferences change more frequently,

i.e. as λ increases. Recall that it is the combination of parameters β and λ that determines

the degree of the self-control problem. In fact, (20) reveals that γ is a sufficient statistic

for measuring the sophisticated agent’s degree of impulsiveness.24 The second term in (20)

is the effect of the goal on the stopping threshold. Because an agent is motivated to avoid

settling for a lower project value only if there exists a potential comparative penalty from

falling short, the goal r only induces more patient behavior as long as r > 0, even in the case

of instantaneous gratification. No potential penalty is imposed when r = 0, so behavior is

unchanged by this goal and it is equivalent to having no goal.25

Proposition 1 In a stationary equilibrium with exogenous goal r, the sophisticate’s stopping

22As before, the negative root is ruled out by the boundary condition for x = 0.
23If the agent is not reference dependent (η = 0), then Equation (20) is identical to the sophisticate’s

threshold obtained by Grenadier and Wang (2007).
24Clearly, γ is decreasing in β and increasing in λ, so comparative statics on each parameter separately

yield the same qualitative results.
25This feature makes clear that η in itself does not simply act as a subsidy to reaching a higher net x.
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threshold exhibits the following properties:

1. The threshold decreases with the degree of impulsiveness: ∂xSE

∂γ
< 0.

2. The threshold increases with the level of the goal: ∂xSE

∂r
> 0.

3. Responsiveness to a goal increases with the degree of goal commitment: ∂2xSE

∂r∂η
> 0.

4. Responsiveness to a goal decreases with the degree of impulsiveness: ∂2xSE

∂r∂γ
< 0.

It is intuitive that the agent’s threshold should decrease with his degree of impulsiveness.

First, he undervalues the future himself. Second, being sophisticated, he anticipates that

future selves will undervalue their own futures as well, decreasing the value of waiting even

further. A second intuitive result is that, regardless of his degree of impulsiveness (including

if he is not), the agent’s threshold increases with the level of the goal if he is reference

dependent. Raising r increases the potential cost of settling for a lower project value. Thus,

a goal induces more patient behavior by providing an additional incentive to wait for a higher

realization of the project value. This result is consistent with experimental evidence that

task performance increases with the goal difficulty, whether externally- or self-set.26

Consistent with empirical evidence on goal commitment (Klein, Wesson, Hollenbeck and

Alge 1999), responsiveness to a goal is increasing in the agent’s degree of reference depen-

dence. An agent who cares more about falling short of his goal is more motivated to avoid

such an outcome than one who cares less about this comparison. Finally, an agent’s respon-

siveness to a goal is decreasing in his degree of impulsiveness, illustrating the interaction

between present-biasedness and reference dependence. A more impulsive agent values the

future less, so he has a weaker incentive to avoid incurring a comparative penalty assessed

in the future. Thus, he not only exhibits more impatience in the absence of a goal, but is

also less responsive to a given goal.

4.3.2 Endogenous Goals

When the goal is internally set, rational expectations implies that each self correctly antici-

pates his descendant’s threshold strategy, so that r = x− I and r̂ = x̂− I. But since x = x̂,

this implies that r = r = r̂ = x − I. Each self correctly expects his descendants to use the

same stopping rule as he does, so every self inherits and meets the same goal in equilibrium.

That is, whether goals are externally or internally set, sophistication implies that x = x̂

and r = r̂. Thus, the optimal threshold with internally set goals, denoted xSI , must satisfy

26Locke and Latham (2002) even find a positive linear relationship between goal difficulty and performance.
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r = xSI − I and can be derived by imposing this condition on Equation (20), yielding

xSI = (
γ

γ − 1 − η
)I,

with γ ≡ βγ1 + (1 − β)γ2

and η < γ − 1,
(22)

and the equilibrium value functions wSI and vSI :

wSI(x, r = xSI − I) =

{

β(xSI − I)( x

xSI )γ1 + (1 − β)(xSI − I)( x

xSI )γ2 if x < xSI

x− I + η(x− xSI) if x ≥ xSI ,
(23)

vSI(x, r = xSI − I) =

{

(xSI − I)( x

xSI )γ1 if x < xSI

x− I + η(x− xSI) if x ≥ xSI .
(24)

The value of Equation (23) in its wait region is the project’s expected present value to

the current self, given the current value of the project’s payoff, x < xSI , and the optimal

threshold xSI . This is essentially the weighted average of two time-consistent option values,

where the first, weighted by β, uses the discount rate ρ, which is reflected in γ1. The second,

weighted by 1−β, uses the discount rate ρ+λ, which is reflected in γ2. The value of Equation

(24) in its wait region is the expected present value of the option to stop, using only the

discount rate ρ, reflected in γ1. Thus, vSI also represents the option value that each current

self would prefer his future selves to use from an ex ante perspective (or would like to commit

them to), though he is resigned to the knowledge that they will maximize w rather than v.

Figure 1 depicts the equilibrium value functions when goals are self-set. The presence of

reference dependence increases the marginal value of waiting, increasing the slope of both

the continuation and current value functions upon stopping, and thus the incentive to wait.

The fact that v lies above its respective w reflects the fact that an exponential discounter

values the option more than a present-biased agent. Independently of η, the slope of v is

flatter than that of w at the equilibrium stopping threshold, reflecting the fact that the

exponential discounter prefers to wait longer than the present-biased agent, and thus, that

the present-biased agent prefers his future selves to wait longer than they actually do.

Proposition 2 By inducing more patient behavior, reference dependence attenuates impul-

siveness in a stationary equilibrium with endogenous goals: ∂xSI

∂η
> 0.

From Equation (22), it is clear that the equilibrium threshold increases with the degree

of goal commitment for any given degree of impulsiveness if λ is finite. An agent with a

high degree of reference dependence has a stronger incentive to meet his goal, since he puts

more weight on the comparative disutility from falling short. It is only in the instantaneous

gratification case that the agent, with infinite impatience and finite goal commitment, is
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x
0

wSI(η > 0)

wSI(η = 0)

vSI(η > 0)

xSI(η > 0)
xSI(η = 0)

slope=1 + η

slope=1

Figure 1: Option values with endogenous goals when β < 1 for varying degrees of η. The
black lines represent the value functions when η > 0. The blue lines represent the value
functions when η = 0. The solid lines depict the current value functions w, which are smooth
and continuous everywhere. The dashed lines depict the continuation values v, which are
kinked at the equilibrium thresholds xSI and coincide with their respective current value
functions w thereafter.

unaffected by goal-setting. As noted in Equation (20), the agent is responsive to a goal even

in the instantaneous gratification case, as long as r > 0. But when the goal is self-set, his

anticipation of extreme impatience makes him unable to set a realistic penalty to improve

his patience, so his behavior is unchanged by reference dependence.27

4.4 Welfare

From an ex-ante perspective, the agent, no matter how severe his degree of present-biasedness

or reference dependence, prefers that his future selves behave according to a time-consistent

strategy. Therefore, I use the preferences of self 0, which determine the ex ante optimum,

to evaluate the agent’s welfare. Since all selves possess reference-dependent preferences,

self 0 must take both consumption and comparison utility into account when evaluating

welfare. Such an analysis allows us to evaluate the welfare consequences for a heterogeneous

population of individuals, with varying degrees of present-biasedness and goal commitment.

It also allows self 0 to determine the value of adjusting his degree of goal commitment η to

improve future behavior, since this choice may be costly.

Sophistication implies that the agent always anticipates that he will meet his self-set goal

in equilibrium. He is thus aware that once he actually stops at some point in the future, his

27As shown in the following sections, this will not be the case when he is naive or when he is placed in a
heterogeneous peer group.
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comparative utility will equal zero in equilibrium, so his overall utility will consist only of the

net terminal payoff, just as in the η = 0 case. Therefore, the ex ante self wants to maximize

the expected present discounted value of his overall utility, which exactly equals the net

terminal payoff alone, as if he were time consistent. That is, he wants to choose the stopping

threshold that maximizes vSI(x). This problem is identical to that of a standard agent who

is dynamically consistent and not reference dependent. Thus, the first-best threshold for any

sophisticated agent, no matter his degree of present-biasedness or goal commitment, coincides

with the threshold that a standard agent chooses: x∗ = ( γ1

γ1−1
)I. This implies that for any

degree of impulsiveness, there exists a degree of countervailing goal commitment that enables

the agent to employ the first-best threshold strategy (i.e. xSI(η∗) = x∗). Unsurprisingly,

this optimal goal commitment η∗ is increasing in γ - as impulsiveness increases, the degree

of goal commitment required to attenuate it increases.

Proposition 3 For every γ ∈ (1,∞), there exists an η∗ such that the reference-dependent

agent with η = η∗ achieves the first best, given by

η∗ =
γ − γ1

γ1

.

This analysis makes clear the differential effect of increasing the degree of goal commitment

η versus increasing the stopping cost I. While both have the same qualitative effect of

increasing xSI , only the former improves welfare by closing the gap between equilibrium and

first-best behavior if η < η∗. In contrast, the latter has no effect on the self-control problem,

since both the equilibrium and first-best thresholds increase with I.

On the other hand, the degree of reference dependence can also be sufficiently high

that the agent waits longer than is first-best. Consider now an agent who is dynamically

consistent (γ = γ1) and reference dependent (η > 0). Although reference dependence does

not distort final overall utility directly, it changes the marginal value of stopping. Because

the agent has an incentive to avoid incurring comparative disutility, the marginal value of

waiting at the first best threshold x∗ exceeds the marginal value of stopping, so the agent

waits longer. Although he achieves a payoff that exceeds x∗, its ex-ante discounted value

is lower than the first best. Hence, reference dependence distorts his behavior away from

the first best and causes him to be overly patient.28 Since a time-consistent agent has no

self-control problem, reference dependence offers no beneficial value, so η∗ = 0 if γ = γ1.

28In contrast, Kőszegi and Rabin (2009) find that in the absence of uncertainty over final payoffs, reference
dependence can lead to apparently impatient behavior, even without present-biased preferences. There, the
reference point is a vector of plans (beliefs) over time, and the agent derives comparison utility in each
period of a consumption-savings problem. If he values contemporaneous comparison utility more than
future comparison utility, then he may overconsume relative to the ex-ante optimum.
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The same argument can clearly be applied to present-biased agents, if η overcompensates

for the conflict in time preferences between current and future selves. Moreover, reference

dependence can be so high that even an impulsive agent would be better off in the absence

of goal-setting. That is, when η > η, he would wait so long under goal-setting that he is

actually better off if he cannot set goals for himself (i.e. η = 0) and behaves impatiently.

Thus, goal-setting can itself be a source of intrapersonal conflict, since it can cause an agent

to wait longer than is optimal from an ex ante perspective. The level of reference dependence

required to be detrimental to the agent’s welfare is increasing in his degree of impulsiveness.

Corollary 1 For every γ ∈ (1,∞), there exists a range of η such that the sophisticated agent

waits longer than the first best: η∗ < η < γ − 1. Moreover, he is strictly worse off under

goal-setting if η < η < γ − 1, where η ≥ η∗ is increasing in γ and is defined by the following

condition:

(
γ − 1

γ − 1 − η
)γ1−1(

1

1 + η
) − 1 = 0.

In particular, a time-consistent agent stops at xSI = ( γ1

γ1−1−η
)I and is strictly worse off if he

is reference-dependent (η > 0).

Although the sophisticate’s self-set goal level is pinned down by rational expectations,

he may further regulate his behavior by seeking to adjust his goal salience or commitment,

behavior that can be strictly welfare-improving. Beyond providing strategies to determine

and set well-defined goals, personal development attempts to aid such endeavors by suggest-

ing concrete ways to increase goal salience, such as writing down and reviewing goals daily

and continually visualizing their achievement (Tracy 2003). Prescriptively, welfare improve-

ment can be achieved purely through programs or services such as those offered by personal

development, which educate individuals about appropriate goal-setting.

While there is much focus on the need for goal commitment, there is evidence that the

converse problem is recognized as well. In psychology, dysfunctional perfectionism is defined

as “overdependence of self-evaluation on the determined pursuit of personally demanding,

self-imposed, standards in at least one highly salient domain, despite adverse consequences”

(Shafran, Cooper and Fairburn 2002). Shu (2008) finds that decision-makers can search too

long when they have an ideal focal outcome in mind. Consistent with the idea that η can

be detrimentally high, Goldsmith (2008) discusses the prevalence of “goal obsession” among

successful executives, many of whom regret sacrificing health or family life in the pursuit of

their careers.
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5 Naivete

To highlight the impact of expectations on behavior and welfare, I now consider the case of

naivete, where the agent mistakenly believes that he will be dynamically consistent.

Because the naif holds incorrect beliefs about his future behavior, it is the perceived,

rather than actual, behavior of future selves that influences his stopping decision. Here,

let x̂ be the threshold that the naif perceives future selves will employ, such that they wait

if x < x̂ and stop otherwise, and let r̂ be their goal. Both the sophisticate and naif have

identical evaluations of their future behavior, discounting it exponentially. Thus, the naif’s

(perceived) continuation value v is still given by Equation (11). However, the sophisticate

and naif differ drastically in their beliefs over their future behavior. The key difference is

that the naive agent believes that given a goal r̂, future selves will choose x̂ such that

x̂ = (
γ1

γ1 − 1
)I + r̂(

η

1 + η
)(

γ1

γ1 − 1
). (25)

The naive agent believes that future selves will be exponential discounters, so he thinks they

will choose a stopping rule that maximizes v, rather than w. Thus, the naif derives (25) by

combining the smooth pasting condition with respect to x with Equation (11), in addition

to the absorbing barrier (9) and value matching (10) conditions.29

Let x be the threshold used by the current self and r be the goal that he inherits. Again,

because the naif’s preferences are identical to those of the sophisticate, the wait region of

his current value function w is still given by Equation (16).

5.1 Equilibrium

Since the naif’s beliefs about future selves’ behavior are incorrect, current and perceived

future selves employ different stopping thresholds, so a fixed point condition does not apply.

Rather, x̂ is given by Equation (25). As before, I will first consider the naif’s response to

any fixed goal level, denoted xNE, before describing his stopping threshold when goals are

self-set, denoted xNI .

5.1.1 Exogenous Goals

Let the naif’s goal be set ex ante and unchanged during the stopping decision, so r = r = r̂.

Assuming that xNE ≡ x ≤ x̂ (and verifying that this holds in equilibrium), we can combine

(16) with the (perceived) continuation value function (15) in its wait region and stopping

29Equivalently, Equation (25) can be derived from Equation (20) by evaluating xSE when β = 1 and the
goal is some r̂.
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rule (25), and boundary conditions (17), (18), (19) to obtain an implicit function for the

naive agent’s threshold xNE when the goal is exogenous and fixed:

xNE =
1

(γ2 − 1)(1 + η)
[β(γ2−γ1)(x̂

NE−I+η(x̂NE−I−r))(
xNE

x̂NE
)γ1 +γ2(1+η)I+γ2ηr], (26)

where x̂NE = ( γ1

γ1−1
)I + r( η

1+η
)( γ1

γ1−1
). Unsurprisingly, the comparative statics with respect

to xNE are analogous to those described in Proposition (1).30

5.1.2 Endogenous Goals

Since each self, including self 0, persistently misperceives future preferences, the current self

inherits the same goal that he will pass on to his descendant (i.e. r = r̂). Thus, whether

goals are externally or internally set, the condition that r = r̂ must hold. Moreover, a self-set

goal is perceived to be realistic, r̂ = x̂−I. Imposing both conditions on Equation (25) yields

the perceived threshold employed by future selves when the goal is endogenous, denoted x̂NI :

x̂NI = (
γ1

γ1 − 1 − η
)I. (27)

Thus, x̂NI is precisely the threshold employed by a time-consistent agent whose goals are

endogenously set.31 Likewise, the naif’s equilibrium threshold when the goal is endogenous,

denoted xNI , is derived by imposing r = x̂NI − I on Equation (26):

xNI =
1

(γ2 − 1)(1 + η)
[β(γ2 − γ1)(x̂

NI − I)(
xNI

x̂NI
)γ1 + γ2(ηx̂

NI + I)]. (28)

His current value function wNI is given by

wNI(x, r = x̂NI − I) =

{

β(x̂NI − I)( x
x̂NI )γ1 + (1 + η)( γ1−1

γ2−γ1

)(x̂NI − xNI)( x

xNI )γ2 if x < xNI

x− I + η(x− x̂NI) if x ≥ xNI .

Proposition 4 The naive agent stops after the sophisticated agent, but falls short of his

goal32: xSI < xNI < x̂NI .

The naif incorrectly believes that he will be more patient in the future, so he sets higher

goals accordingly. But when faced with the stopping decision in the present, he undervalues

30Since the intuition is virtually identical, the details are provided in the Appendix.
31Note that it also corresponds to (22) when β = 1 or λ = 0.
32As shown in the Appendix, this result also holds for exogenous r ≥ 0: xSE < xNE < x̂, where x̂ is given

by (25). The intuition is essentially identical. When r = x̂− I, the naif’s over-optimism leads him to set his
goal higher than the sophisticate’s, making the gap between their stopping thresholds even larger.
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the future more than he had expected, and stops earlier, falling short of his overly ambi-

tious goal. The fact that he stops after his sophisticated counterpart can be attributed to

two factors. First, irrespective of reference dependence, both the sophisticate and the naif

overweight the present. But because the sophisticate correctly foresees that he will also un-

dervalue the option to wait in the future, he undervalues the present option even further. In

contrast, the naif is more optimistic about future behavior, so he values the present option

relatively more.33 The second effect is caused by the interaction of reference dependence

and expectations. The naif’s optimism leads him to set higher goals for himself than the

sophisticate, who realistically tempers his expectations. Since he incurs a higher potential

penalty upon stopping, the naif has a larger incentive to wait for a higher project value.

5.2 Welfare

In the absence of reference dependence, the naive agent is clearly better off than his so-

phisticated counterpart from an ex-ante perspective. When η = 0, there is no comparison

utility and the ex ante self wants to maximize the expected present discounted value of his

net terminal payoff alone. Therefore, the first best is to employ the threshold x∗ = ( γ1

γ1−1
)I.

Since xSI(η = 0) < xNI(η = 0) < x∗, the naive agent is unambiguously better off due to the

“sophistication effect,” whereby the sophisticate’s realistic pessimism leads to a relatively

detrimental outcome (O’Donoghue and Rabin 1999).

However, the naif’s welfare is less rosy when he has reference dependent preferences,

because he incurs direct comparative disutility from falling short of his optimistic expecta-

tions. From an ex ante perspective, the naif’s true continuation value when goals are self-set

is given by ṽNI(x):

ṽNI(x, r = x̂NI − I) =

{

[xNI − I + η(xNI − x̂NI)]( x

xNI )γ1 if x < xNI

x− I + η(x− x̂NI) if x ≥ xNI ,
(29)

where x̂NI and xNI are defined by Equations (27) and (28), respectively. Since his unantici-

pated impulsiveness leads him to fall short of his overly optimistic goal, he incurs disutility

η(xNI − x̂NI) upon stopping, in addition to receiving the net terminal payoff xNI − I.

Because the naive agent incurs comparative disutility that his sophisticated counterpart

does not, the welfare comparison between naivete and sophistication is not as clear-cut

as in the absence of reference-dependence, and there are circumstances in which the naif

is unambiguously worse off than the sophisticate. For example, consider the case when

reference dependence is quite high: let η ≥ η∗, so xSI ≥ x∗. Since the naif always waits

33This is the same result obtained by Grenadier and Wang (2007), whose model corresponds to η = 0 here.
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longer than his sophisticated counterpart, the ex-ante expected present discounted value

of his net terminal payoff is strictly less than that of the sophisticate. Furthermore, the

naif incurs comparative disutility from falling short of his overly optimistic goal while the

sophisticate incurs no comparative disutility. Thus, the naif is worse off than the sophisticate

in both components of overall utility when η ≥ η∗.

Proposition 5 When goals are endogenous, let ṽN∗

(x) denote the (true) first-best option

value that the naif can attain, and let vS∗

(x) denote the first-best option value that the

sophisticate can attain. When η > 0, the first best that the naif can achieve is strictly lower

than that of the sophisticate: ṽN∗

(x) < vS∗

(x).

In the previous section, I have shown that the sophisticate’s maximum attainable option

value is achieved when η = η∗. In contrast, the naif persistently sets his goal to be x̂NI−I, and

incurs comparative disutility from falling short. Given that he sets this goal, the threshold

that would maximize his overall utility, but which no value of η can attain due to his over-

optimism, is the one that allows him to meet it. If this were possible, he would incur no

comparative disutility and the option value would only consist of the discounted value of

consumption utility. But since x̂NI > x∗, the value of stopping at x̂NI is strictly less than

that of stopping at x∗ for any η > 0. Thus, in contrast to the “sophistication effect” that

sophisticates are worse off than naifs in the absence of reference-dependence (O’Donoghue

and Rabin 1999), the first-best that the naif can achieve is strictly lower than that of the

sophisticate when goals are self-set.

Proposition 5 implies, in contrast to the sophisticate’s case, that the naif’s ignorance

regarding his limitations is a handicap that cannot be overcome by changing η alone. Be-

yond education about appropriate goal commitment, the naif would need to recognize his

limitations to correct his expectations, which may be more difficult to achieve. Clinical psy-

chologists have long recognized that individuals may persistently fall short of self-set goals

while simultaneously maintaining the belief that they can attain them. Hamacheck (1978)

describes neurotic perfectionists as individuals “whose efforts - even their best ones - never

seem quite good enough, at least in their own eyes. It always seems to these persons that

they could - and should - do better . . . ” This result also illustrates the pertinence of advice

found in personal development on how to calibrate one’s expectations properly, to avoid the

disappointment that arises from unattainable goals (Tracy 2003).
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6 Aspirational Goals

Thus far, I have assumed that the agent’s goal must coincide with the outcome he expects

to achieve. Because there is no uncertainty over the realized outcome, regardless of whether

beliefs are correct or not, it is unclear how the agent could simultaneously anticipate a

particular outcome with certainty, knowingly set a goal that differs from that expectation,

and also derive utility from comparing the outcome to a goal that he knew to be unrealistic.

An alternative interpretation is that the goal represents an individual’s aspiration, rather

than an expectation about what he will attain. In this case, the goal may arguably be

divorced from expectations without logical conflict, so that he can strategically set goals for

future selves even if he is aware that they are unrealistic. If an agent were to choose his goals

freely ex ante, the question of interest is what aspirational goal optimizes ex-ante welfare. I

assume that the feasible set of goals is given by r ∈ [−I,∞).34 Since a goal can only be set

for a future self, he seeks to maximize his total utility from an ex-ante perspective. Thus,

the optimal aspirational goal r∗ is chosen to maximize the continuation value function v(x, r̂)

described by Equation (11) in its wait region, anticipating future selves’ behavior given r∗.

His decision involves a trade-off between consumption and comparison utility. Choosing a

more ambitious goal increases his material payoff by incentivizing him to wait for a higher

project payoff, but reduces his comparison utility.35 I focus on the case of sophistication,

where the agent is aware of and would like to attenuate his self-control problem.36

Proposition 6 When the agent’s comparison function is linear, his ex-ante welfare is mono-

tonically decreasing in his goal r. Thus, the aspirational goal r∗ that maximizes ex-ante

welfare is the lowest possible.

Consider an agent who has no self-control problem (γ = γ1). Any positive goal induces

him to wait longer than is first-best to maximize expected consumption utility. Thus, he

is clearly better off setting a goal which is lower than the outcome he will actually achieve.

But even in the more interesting case when the agent has a self-control problem (γ > γ1)

and can benefit from additional motivation, choosing the lowest possible goal is optimal

from an ex ante perspective for any degree of present-biasedness, γ ∈ (γ1,∞). For each

34Since the project payoff process is bounded below by zero, the lowest net terminal payoff the agent can
receive is −I, if he stops the process when it is zero.

35Brunnermeier and Parker (2005) consider the optimal choice of subjective beliefs when the agent faces a
trade-off between material outcomes and belief-based utility. In their setting, there is no incentive to distort
beliefs in order to change actions. The only motivation for belief distortion is the benefit for anticipatory
utility flows, so any belief distortion decreases material benefits and pessimistic beliefs can only hurt.

36Since the naif believes that he has no self-control problem, he sees no instrumental value in a positive
goal.
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of the two components of v, namely the expected discounted values of consumption and

comparison utility, the two forces affecting each are the utility incurred upon stopping and

the time value of waiting for it. As the agent’s goal decreases, the decrease in consumption

utility reduces the value function, but time discounting counteracts this reduction, since

achieving a lower terminal payoff does not require waiting as long. On the other hand, as

the goal decreases, both the increase in comparison utility and time discounting positively

affect the value function, since he realizes higher comparison utility and stops earlier due to

the weaker force on self-discipline. Since the comparison utility function is linear, the latter

effect dominates the former, so that choosing the lowest possible goal is globally optimal.

Proposition 7 To set a non-degenerate aspirational goal (r∗ > −I), the agent must be

sufficiently impulsive and his sensitivity to gains must be diminishing sufficiently fast.

The finding that an agent prefers to set the lowest possible goal no matter how severe

his self-control problem is reliant on both the asymmetric effect of time discounting, which

is due to the trade-off between consumption and comparison utility, and the linearity of

comparison utility, which implies that the marginal benefit from exceeding a given goal is

constant. More realistically, the agent may exhibit diminishing sensitivity to gains, so that

the marginal benefit from exceeding his goal is decreasing as the gap between low aspirations

and realized outcomes increases. Given the preceding intuition, it is not surprising that the

agent must have a sufficiently severe self-control problem and exhibit sufficiently diminishing

sensitivity to gains in order to prefer setting a non-degenerate goal.

Proposition 8 More impulsive agents set higher aspirational goals: ∂r∗

∂γ
> 0. Nonetheless,

more impulsive agents stop earlier.

As an agent’s impulsiveness becomes more severe, the motivational benefit of setting

a more ambitious aspirational goal increases. On the other hand, undervaluing the future

implies that his responsiveness to a given goal declines as well, weakening the benefits of

setting a higher goal relative to the loss in comparison utility. Nonetheless, the former effect

dominates the latter. Thus, when Proposition 7 holds, more impulsive agents set higher

aspiration goals for themselves in order to improve their patience, despite the ensuing loss in

comparison utility. Although their aspirational goals are higher than those of less impulsive

agents, they still stop earlier.

7 Social Comparison

Thus far, I have assumed that an agent’s only point of reference is his own expected net

terminal payoff. But in addition to, or rather than, engaging in self-comparison, he may
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look to a role model or peer(s) as the basis of comparison. Many previous theories of social

comparison have considered their costly and wasteful effects. For example, Frank (1985)

argues that the pursuit of status decreases societal welfare, because individuals engage in

costly signaling in a zero-sum game. Here, I explore whether social comparison can serve to

attenuate the self-control problem by providing individuals with reference points that allow

them to set goals. Previously, Battaglini et al. (2005) have shown how the presence of a peer

can ameliorate or exacerbate one’s impulsive behavior, since his behavior can act as either

“good news” or “bad news” about one’s own ability to resist temptation. In their model,

because agents have incomplete information about their own and their peers’ vulnerability

to temptation but are aware that they are correlated, observing a peer’s behavior offers

information about one’s own degree of self-control. On the other hand, I consider the effects

of social comparison under full information and instead emphasize how they can be motivated

to exercise patience because they derive utility from comparing their own outcomes to others’.

Consider two agents, i and j, who compare themselves against one another. When

the agent’s goal is no longer a matter of pure self-comparison, the natural extension of

sophistication is that the agent’s goal must be derived from correct expectations about his

own and his peer’s outcomes, given full information about one another’s characteristics.37

Suppose that each agent’s goal, or reference point, is a convex combination of his own

expected net terminal payoff and his peer’s38:

ri = αi(xi − I) + (1 − αi)(xj − I), where ai ∈ [0, 1]

rj = αj(xj − I) + (1 − αj)(xi − I), where aj ∈ [0, 1].

If αi = 1, agent i evaluates himself exclusively against his own expected net terminal payoff,

so this case is equivalent to the preceding analysis of an individual agent. If αi = 0, agent i

evaluates himself exclusively against his expectation of his peer’s (i.e. agent j’s) net terminal

payoff.39 I also allow for differences in agents’ degrees of impulsiveness (βk, λk), reference

37As in the case of self-comparison, the model could also be extended to the case in which the agent
persistently misperceives his peer’s “ability,” with similar insights.

38Due to linearity of the reference point and the comparison utility function, this formulation is equivalent
to assuming that an agent separately compares his net terminal payoff against its own expectation and the
expectation of his peer’s net terminal payoff, and that his comparison utility is formed by taking a convex
combination, dictated by his parameter α, of these two comparisons.

39Although the expectation of a peer’s net terminal payoff and that peer’s actual material outcome coincide,
I assume that an agent’s goal is the expectation, so that his comparison utility is incurred when he himself
stops. If the comparison were made once both agents had stopped, then comparison utility could be incurred
after one’s stopping time. For example, if two identical agents face separate payoff processes with identical
parameters, they will use the same thresholds but stop at different times. Since the stopping is irreversible
and the expectation of his peer’s outcome coincides with its realization, the assumption that the comparison
is assessed upon stopping against an expectation seems reasonable.
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dependence (ηk), and the characteristics of their projects (µk, σk), where k = i, j.

When peers have different degrees of self-control, how does the degree of equilibrium

patience vary between them? If there is a difference in their threshold strategies, then

both agents incur non-zero comparative utility, in contrast to the individual case. Thus,

the choice of a peer who will maximize ex ante welfare includes a trade-off between the

expected discounted value of the two components of his overall utility, the material payoff

and comparison utility. I focus on the case in which the agents differ in their degrees of

impulsiveness, (βi, λi) 6= (βj, λj), but are identical in all other characteristics (α, η, µ, σ).40

For simplicity, let each agent derive comparison utility exclusively from the expected

outcome of his peer, αi = αj = 0, implying that ri = xj − I and rj = xi − I in equilibrium.41

As before, I use γ as the measure of impulsiveness, where γk = βkγ1 +(1−βk)γ2k for k = i, j.

Without loss of generality, let agent i have more patience than agent j: γi < γj. Recall

that Equation (20) describes an agent’s optimal threshold in a stationary equilibrium with

an arbitrary goal level. Therefore, I can immediately derive the optimal thresholds in a peer

group by substituting the appropriate goals. Since each agent has complete information

about both his own and his peer’s preferences, the optimal thresholds must satisfy the

following system of equations simultaneously in equilibrium, where we substitute the relevant

goals (ri = xj − I, rj = xi − I) to obtain the optimal thresholds:

xi = (
γi

γi − 1
)I + (xj − I)(

η

1 + η
)(

γi

γi − 1
) (30)

xj = (
γj

γj − 1
)I + (xi − I)(

η

1 + η
)(

γj

γj − 1
). (31)

Thus, the agents’ equilibrium thresholds lie at the intersection of the agents’ optimal thresh-

old functions, where η < min{γi − 1, γj − 1}.42

For the sophisticated agent, belonging to a homogeneous peer group (γi = γj) is equiva-

lent to pure self-comparison.43 Intuitively, there is no difference between comparing oneself

against one’s own expected outcome and comparing oneself against the expected outcome of

an identical twin. Hence, all of the preceding welfare analysis for the individual case applies

for agents in a homogeneous peer group.

Proposition 9 In a heterogeneous peer group:

40Allowing the other parameters to differ leads to similar comparative statics in the expected directions.
41The results can easily be extended the case when αi 6= 0 and αj 6= 0.
42This is a technical assumption to ensure that the equilibrium thresholds are bounded. It implies that

if each agent were to engage in self-comparison (or were part of a homogeneous peer group), his threshold
would be positive and well-defined.

43Unsurprisingly, this result also holds if αi = αj > 0.
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1. Relative to having no goal (η = 0), having any peer increases an agent’s stopping

threshold, even if the peer is more impulsive: ∂xi

∂η
> 0 for all γj ∈ (1,∞).

2. Each agent’s stopping threshold is decreasing in his peer’s degree of impulsiveness:
∂xi

∂γj
< 0 and

∂xj

∂γi
< 0.

3. The more patient agent always has a higher stopping threshold than his more impulsive

peer: If γi < γj, then xi > xj.

In the absence of a goal or peer, an agent k stops too early, choosing the stopping threshold

( γk

γk−1
)I. A peer provides the agent with a goal that increases the potential cost of settling for

a lower project value, since he incurs a comparative penalty if he falls short of his peer. The

fact that the peer is relatively more impulsive merely implies that the goal will not be as high

as it would be with a less impatient peer. Hence, the potential penalty and consequently,

the agent’s incentive to wait, increase with his peer’s degree of self-control. This result is

consistent with Bandura and Jourden’s (1991) finding that individuals adjust their goals in

response to their peers’ performance. When their peers’ performance is lower than their

own, individuals adjust their goals downward and are content with a lower performance

level because they are still outperforming their peers. In particular, as long as at least one

member of the group exhibits some self-control (e.g., γi is finite), both members exhibit more

patient behavior than they would in the absence of goal, even if the other has a preference for

instantaneous gratification (i.e. γj → ∞). The mitigation of j’s preference for instantaneous

gratification stands in contrast to the purely individual and homogeneous cases, when goal-

setting could not improve his patience. When agent i has some self-control, however limited,

he stops at xi > I even in the absence of a goal. This sets a potential penalty that j

wishes to avoid, mitigating his extreme impulsiveness; in turn, j’s more patient behavior

has a positive feedback effect on i’s own behavior.44 It is only when both agents prefer

instantaneous gratification that social comparison does not improve patience, just as the

individual setting, when j is unable to provide such a penalty for himself. Because the

agent with more self-control is able to wait longer even in the absence of a goal and is more

responsive to goals, he sets a higher stopping threshold than his more impulsive counterpart.

7.1 Optimal Peers

I now consider the choice of peer that maximizes ex ante welfare, maintaining the assumption

that ri = xj − I and rj = xi − I. This decision involves a trade-off between consumption

44This feedback effect between heterogeneous peers certainly does not rely on ηi = ηj , and is proportional
to the product ηiηj .
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and comparison utility, since choosing a relatively less impulsive peer increases the material

payoff but induces negative comparison utility and increases the expected wait.

Proposition 10 An agent’s ex ante welfare vi is monotonically increasing in his peer’s

degree of impulsiveness: ∂vi

∂γj
> 0. Thus, the partner j∗ who maximizes agent i’s ex ante

welfare is the most impulsive possible: γ∗j → ∞ for all γi ∈ (γ1,∞).

The finding that any agent, no matter his degree of impulsiveness, prefers to choose the

most impulsive peer possible mirrors that of Proposition 6, where every agent with a linear

comparison utility function sets the lowest aspirational goal possible.45 This similarity is

unsurprising, since choosing a peer whose expected outcome can differ from one’s own is

akin to choosing an aspirational goal that can differ from one’s expected outcome. In both

cases, there is the same trade-off between consumption and comparison utility, and the same

forces that affect an aspirational goal-setter, apply to the agent who selects the optimal peer.

As in the case of intrapersonal comparison, there is the question of whether the marginal

utility of a social comparison remains the same between any pair of peers. It seems reasonable

that two peers with similar characteristics might choose to compare themselves against one

another. But at some point, the gap between two agents may be too large to merit credible

comparison. For example, it seems unlikely that an honors student derives significant utility

from comparing himself to a remedial student. Diminishing sensitivity to comparative gains

would be consistent with this phenomenon and would lead to a less extreme choice of the

optimal peer, just as in the case of aspirational goal-setting, described in Proposition 7.

8 Conclusion

This paper addresses the role of self-set, non-binding goals as a source of internal motivation

in an optimal stopping problem. When agents have linear reference-dependent preferences

and endogenously set a goal regarding the expected outcome that serves as the reference

point, they can attenuate the self-control problem, and sophisticates can even achieve the first

best from an ex ante perspective. Too much reference dependence, on the other hand, leads

an agent to wait longer than the first best, and is always detrimental in the absence of present-

biasedness. Notably, none of the effects of goal-setting require any form of loss aversion

or curvature in the comparison utility function, nor do they rely on ex-ante uncertainty

45In contrast, Battaglini et al. (2005) find that the optimal peer is always slightly weaker, 0 < βj < βi,
when agents infer information about their own degree of self-control by observing the behavior of others.
There, having a much weaker partner is undesirable because it is “bad news” about one’s own willpower,
while a stronger partner provides relatively less information.
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over outcomes. These findings suggest that the demand for goods and services aimed at

educating individuals about goal-setting and goal commitment may be a rational response

to impulsiveness, and that the need for external enforcement may be overestimated.

When the goal represents an aspiration and can be divorced from expectations, there

exists a trade-off between consumption and comparison utility. I find that the agent must

be sufficiently present-biased and exhibit diminishing sensitivity to gains in order to set a

non-degenerate aspirational goal. In this case, more impulsive agents set higher aspirational

goals to counteract impatience. Otherwise, the incentive to maximize comparison utility

dominates and he prefers to set the lowest aspirational goal possible.

I extend the model to social comparisons, where each agent compares his material out-

come against the expectation of his peer’s. Peer comparison induces more patient behavior

relative to the absence of a goal. Nonetheless, every agent prefers to compare himself to a

peer with the least self-control possible, regardless of the severity of his impulsiveness.

The model presented here can be readily distinguished from other proposed explanations

of goal-setting behavior by observables. That goals are simply reminders of tasks to do is

belied by evidence that people report less or more satisfaction with the same outcome when

their goals differ (Heath et al. 1999, Medvec et al. 1995, McGraw et al. 2005). While publicly

announced goals may also influence behavior through social censure or praise, that individu-

als respond to goals outside the public domain (Locke and Latham 2002) indicates that social

reputation concerns are not the sole driver. My model predicts that a reference dependent

agent may be motivated by a self-set goal even if it is privately known; if he compares himself

to a peer, his behavior is affected by information about that peer’s achievements regardless

of whether his relative performance will be publicized. Another alternative is that a goal can

act as a self-monitoring tool for an individual with imperfect information about the extent

of his self-control problem (Bénabou and Tirole 2004). Regardless of whether the agent is

sophisticated or naive, the model presented here can be distinguished from a self-reputation

model in several ways. The two models predict very different responses to information.

Whether or not his comparison utility function is linear, the reference-dependent agent is

motivated by a goal regarding a future outcome, but is unresponsive to information about

past behavior. In contrast, knowledge about past behavior leads the imperfectly informed

agent to update his beliefs about his willpower and behave accordingly. Thus, a reference-

dependent agent might keep a list of future accomplishments to motivate their achievement,

while an imperfectly informed agent would prefer to remind himself of past accomplishments.

Likewise, while external constraints on previous behavior have a detrimental effect on the

future behavior of an imperfectly informed agent because they weaken his reputation capital,

they should have no such influence on the reference-dependent one.
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The current model limits attention to a single stopping decision. A natural extension is

to consider goal-setting when the agent faces a multi-stage project. In this richer setting,

the agent may also be able to “break down” or aggregate goals to improve his welfare.

This decision corresponds to Read, Loewenstein and Rabin’s (1999) discussion of “motivated

bracketing,” where an agent with a self-control problem chooses to frame a problem narrowly

or broadly to accomplish a goal. In Hsiaw (2009), I show that in the presence of uncertainty

over outcomes and loss aversion, the decision to frame narrowly or broadly involves a trade-

off between greater motivation and more expected comparative disutility due to outcome

variance when goal evaluation is frequent. Similarly, the agent could perform the same

exercise when facing multiple projects. There, an important consideration is the timing of

the comparative evaluation if a goal pertains to multiple outcomes realized at different times.

While this paper considers situations in which goals are evaluated upon the endogenous

stopping time, one can imagine situations in which the relevant goals are time-dependent,

i.e. “Timely.” For example, a dieter might set a target weight to achieve by the end of

the year, and feel bad about herself on December 31 if she has not reached it. In social

comparisons, attaining a favorable outcome before a peer or rival can provide positive utility

as well. In such settings, an agent might explicitly set time-contingent goals or engage in

continual evaluation, relative to expectations about himself or to his peer.

The interaction of hyperbolic discounting and reference-dependent preferences has impli-

cations for a number of other contexts. For example, contracting between a principal and

agent may be underestimating the effect of external incentive schemes if they are reinforced

by goal-setting. Likewise, the existence of peer effects through social comparison suggests

that group or team settings may be beneficial to managers or educators who are interested

in improving productivity. Further pursuit of these or related lines of inquiry would enrich

our understanding of such effects and their interactions with standard mechanisms.
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A Appendix

A.1 Proof of Proposition 3

Each self prefers that future selves choose their thresholds in order to maximize the contin-

uation value v rather than the current value w. Therefore, we look for the threshold x that

maximizes the wait region of vSI . The first order condition ∂vSI

∂x
= 0 gives us the first-best

threshold x = ( γ1

γ1−1
)I, which is identical to the solution for a standard agent x∗. We can

also see this feature by inspecting the wait region of vSI , which is the same function of the

threshold as v∗. Because utility incurred upon stopping is not directly distorted, the ex ante

option value of waiting, given a stopping threshold, is not distorted by η directly.

However, the presence of η > 0 affects the equilibrium threshold by changing the marginal

value of stopping. The current self’s optimal threshold is xSI = ( γ

γ−1−η
)I, so the first best

can only be achieved for η∗ such that γ

γ−1−η∗
= γ1

γ1−1
. We can verify that η∗ < γ−1 by noting

that γ−γ1

γ1

= γ

γ1

− 1. Since γ1 > 1, then this inequality is satisfied for any β ∈ [0, 1].

A.2 Proof of Corollary 1

The first part follows from the above proof of Proposition 3. The second statement follows

by comparing the value functions when η > 0 versus η = 0. When η = 0, the agent stops at

threshold ( γ

γ−1
)I. When η > 0, the agent stops at threshold ( γ

γ−1−η
)I. Thus, goal-setting is
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detrimental when

[(
γ

γ − 1 − η
)I − I](

1

( γ

γ−1−η
)I

)γ1 < [(
γ

γ − 1
)I − I](

1

( γ

γ−1
)I

)γ1

[(
1 + η

γ − 1 − η
)I](

1

( γ

γ−1−η
)I

)γ1 < [(
1

γ − 1
)I](

1

( γ

γ−1
)I

)γ1

0 < (
γ − 1

γ − 1 − η
)γ1−1(

1

1 + η
) − 1,

and the lower bound η satisfies the above condition with equality. Define the function H(η)

such that

H(η) = (
γ − 1

γ − 1 − η
)γ1−1(

1

1 + η
) − 1.

We can verify that η exists and is unique by noting that H(0) = 0, H(γ − 1) → ∞, and

H(η) strictly decreases for η < η∗ and strictly increases for η > η∗. Thus, we have shown

existence and uniqueness of η for any γ ∈ (1,∞), as well as the fact that η∗ < η < γ − 1.

Finally, the implicit function theorem yields

∂η

∂γ
= −

−( η

1+η
)( γ1−1

(γ−1−η)2
)( γ−1

(γ−1−η)γ1−2 )

( 1
1+η

)( γ−1
(γ−1−η)γ1−1 )[−

1
1+η

+ ( γ1−1
γ−1−η

)]
> 0,

which is positive since the numerator is always negative and the denominator is positive

since η > η∗.

A.3 Existence and Uniqueness of xNE

First, I prove the existence and uniqueness of xNE for any given r ≥ 0. Define the following

function G(x):

G(x) =
1

(γ2 − 1)(1 + η)
[β(γ2 − γ1)(x̂− I + η(x̂− I − r))(

x

x̂
)γ1 + γ2(1 + η)I + γ2ηr]−x, (32)

where x̂ = ( γ1

γ1−1
)I + r( η

1+η
)( γ1

γ1−1
). Note that when r = x̂− I, then x̂ = x̂NI .

Proof.

Consider the function G(x), given by Equation (32). Clearly, xNE must satisfy G(xNE) =

0, where I have assumed that xNE ≤ x̂ by construction. Since G(0) = γ2[(1 + η)I + ηr] > 0
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and

G(x̂) = −
(1 − β)(γ2 − γ1)(rη + (1 + η)I)

(1 + η)(γ1 − 1)(γ2 − 1)
< 0,

then xNE exists for any r ≥ 0. Next, note that

G′(x) =
1

(γ2 − 1)(1 + η)
[β(γ2 − γ1)(x̂− I + η(x̂− I − r))(

1

x̂
)γ1(γ1)(x)

γ1−1] − 1

G′′(x) =
1

(γ2 − 1)(1 + η)
[β(γ2 − γ1)(x̂− I + η(x̂− I − r))(

1

x̂
)γ1(γ1)(γ1 − 1)(x)γ1−2],

so G′′(x) > 0 for all x > 0. Then G′(x) < 0 for any x such that G(x) = 0. Thus, there exists

an xNE ≤ x̂ such that G(xNE) = 0.

The expression for xNE, which is given by Equation 26, was constructed by assuming

that xNE ≤ x̂. To ensure uniqueness of xNE, we must rule out the case where xNE > x̂.

Suppose that there exists another threshold x̃ such that it is optimal for the naif to stop

when x ≥ x̃ and wait otherwise, where x̃ > x̂. To construct the value function, note that the

naif still believes that all future selves will employ the threshold x̂ = ( γ1

γ1−1
)I + r( η

1+η
)( γ1

γ1−1
),

and the continuation value v is still given by Equation (11). When x ∈ [0, x̂), then v(x, r̂) =

[x̂− I + η(x̂− I − r̂)](x
x̂
)γ1 ≡ v1(x, r̂). When x ∈ [x̂,∞), then v(x, r̂) = x− I + η(x− I − r̂).

When x ∈ [0, x̃), then w satisfies the differential equation given by Equation (7). When

x ∈ [x̃,∞), then w(x, r) = x − I + η(x − I − r). Since 0 ≤ x̂ < x̃, the continuation value

function w now has three regions. Let w1 describe w when x ∈ [0, x̂), w2 describe w when

x ∈ [x̂, x̃), and w3 describe w when x ∈ [x̃,∞). Let r = r̂.

When x ∈ [0, x̂), then v(x, r) = v1(x, r) = A1x
γ1 , where A1 ≡ [x̂− I + η(x̂− I − r̂)](x

x̂
)γ1 ,

and w satisfies the differential equation given by Equation (7). Substituting v(x, r) = A1x
γ1

into (7) yields the solution

w1(x, r) = βA1x
γ1 + A2x

γ3 , (33)

where γ1 and γ3 are the positive and negative roots of the quadratic equation 1
2
σ2γ + (µ −

1
2
σ2)γ − ρ = 0, as before, where γ1 > 1 and γ3 < 0.

When x ∈ [x̂, x̃), then v(x, r) = x− I + η(x− I − r) and w again satisfies Equation (7).

Substituting v(x, r) = x− I + η(x− I − r) into (7) yields the solution

w2(x, r) = βA3x
γ2 + A2x

γ4 + β(1 + η)(
λ

ρ+ λ− µ
)x− β[(1 + η)I + ηr], (34)

where γ2 and γ4 are the positive and negative roots of the quadratic equation 1
2
σ2γ2 + (µ−

1
2
σ2)γ − (ρ+ λ) = 0, as before, where γ2 ≥ γ1 > 1 and γ4 < 0.
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The agent stops for any x ∈ [x̃,∞), so

w3(x, r) = x− I + η(x− I − r). (35)

By definition of the geometric Brownian motion x, x = 0 is an absorbing barrier of the

project value process. Furthermore, the continuation value function v must be continuous,

while the current value function w must be continuous and smooth everywhere. Since the

naif believes that future selves will behave in the optimal manner, v is smooth as well. This

gives the following boundary conditions:

Boundary: v1(0, r) = 0, (36)

w1(0, r) = 0, (37)

Value Matching: v1(x̂, r) = x− I + η(x̂− I − r), (38)

w1(x̂, r) = w2(x̂, r), (39)

w2(x̃, r) = w3(x̃, r), (40)

Smooth Pasting:
∂v1

∂x
(x̂, r) = 1 + η, (41)

∂w1

∂x
(x̂, r) =

∂w2

∂x
(x̂, r), (42)

∂w2

∂x
(x̃, r) = 1 + η. (43)

Using the above boundary conditions in conjunction with v1(x, r) = A1x
γ1 and Equations

(33), (34), and (35), we obtain the following non-linear equation for x̃:

x̃ =
γ2(1 + β)[(1 + η)I + ηr]

(γ2 − 1)(1 + η)(1 − λβ

ρ+λ−µ
)

+ (
x̃

x̂
)γ4

(

β(ρ− µ)x̂

ρ+ (1 − β)λ− µ

)

, (44)

where x̂ = (γ1

γ1

)I + r( γ1

γ1−1
)( η

1+η
). Now, define the function F (x) as follows:

F (x) =
γ2(1 + β)[(1 + η)I + ηr]

(γ2 − 1)(1 + η)(1 − λβ

ρ+λ−µ
)

+ (
x

x̂
)γ4(x̂)

(

β − λβ

ρ+λ−µ

1 − λβ

ρ+λ−µ

)

− x, (45)

where the first term and second terms are positive since γ2 > 1, β < 1, µ < ρ, and r ≥ 0.

Clearly, x̃ satisfies F (x̃) = 0. Since γ4 < 0, then limx→0 F (x) → ∞ and limx→∞ F (x) → −∞.

Thus, x̃ exists. Moreover, γ4 < 0 implies that F ′(x) < 0 and F ′′(x) < 0, so x̃ is unique.
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Evaluating F (·) at x̂, we obtain

F (x̂) =
γ2(1 + β)[(1 + η)I + ηr]

(γ2 − 1)(1 + η)(1 − λβ

ρ+λ−µ
)

+

(

β − λβ

ρ+λ−µ

1 − λβ

ρ+λ−µ

)

(x̂) − x̂

=
−(1 − β)(γ2 − γ1)[(1 + η)I + ηr]

(γ1 − 1)(γ2 − 1)(1 + η)(1 − λβ

ρ+λ−µ
)
,

which is negative since γ2 > γ1. Since G(x̂) < 0, then x̃ < x̂, which violates the assumption

used to construct x̃, that x̃ > x̂. Thus, there does not exist an optimal threshold x̃ such that

x̃ > x̂ and the naif stops when x ≥ x̃ and waits otherwise.

A.4 Comparative Statics for xNE

Having shown existence and uniqueness of xNE, we can use the implicit function theorem to

derive the relevant comparative statics.

Proof. By the implicit function theorem,

∂x

∂β
= −

∂G
∂β

∂G
∂x

.

From the preceding proof of uniqueness, it is clear that G′(x) < 0 for all x ∈ [0, x̂]. Turning

to the numerator,

∂G

∂β
=

1

(γ2 − 1)(1 + η)
(γ2 − γ1)(x̂− I + η(x̂− I − r))(

x

x̂
)γ1 > 0.

Therefore, ∂xNE

∂β
> 0. The implicit function theorem also gives us

∂x

∂r
= −

∂G
∂r
∂G
∂x

,

Turning to the numerator,

∂G

∂r
=

1

(γ2 − 1)(1 + η)
[β(γ2 − γ1)(

x

x̂
)γ1(

1

x̂
)[x̂(1 + η)(

∂x̂

∂r
) − ηx̂

− γ1(x̂− I + η(x− I − r))(
∂x̂

∂r
)] + γ2η]

=
1

(γ2 − 1)(1 + η)

(

β(γ2 − γ1)(
x

x̂
)γ1(−η) + γ2η

)

.

Since x ≤ x̂, then ∂G
∂r
> 0, since β(γ2 − γ1)(

x
x̂
)γ1 < γ2. Thus, ∂xNE

∂r
> 0.
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Consider the effect of increasing β on ∂xNE

∂r
. It is clear that ∂G

∂r
is decreasing in β, while

∂G
∂x

is increasing in β. Therefore, ∂2xNE

∂r∂β
> 0.

Now, consider the effect of increasing η in equilibrium. Let r̂ = x̂− I. Since it is shown

in the following proof that ∂xNE

∂x̂
> 0 and clearly ∂x̂

∂η
> 0, it is sufficient to show that ∂G

∂η
> 0

holding x̂ fixed. By the implicit function theorem,

∂x

∂η
= −

∂G
∂η

∂G
∂x

,

where ∂G
∂x
< 0. Turning to the numerator,

∂G

∂η
=

1

(γ2 − 1)

(

−(
1

1 + η
)2[β(γ2 − γ1)(x̂− I)(

x

x̂
)γ1 + γ2I + γ2ηx̂] + (

1

1 + η
)(γ2x̂)

)

= (
1

(γ2 − 1)
)(

1

1 + η
)2(x̂− I)[−β(γ2 − γ1)(

x

x̂
)γ1 + γ2] > 0,

since xNE < x̂. Thus, ∂xNE

∂η
> 0.

A.5 Proof of Proposition 4

Since the result that xSE < xNE < x̂NE is slightly more general and implies that xSI < xNI <

x̂NI , I will show the former. Note that in “rational expectations” equilibrium (r = x̂ − I),

the naif’s goal is the same as that of the time-consistent agent due to his mistaken beliefs,

and is higher than that of the sophisticate.

Proof.

In the preceding proof of uniqueness of xNE, I already showed that xNE < x̂NE when

β < 1 for any r ≥ 0. Since r = x̂− I > 0, then it follows that xNI < x̂NI as well. Thus, the

naif falls short of his reference point.

Now, consider the function G(x) as defined by Equation (32) and reproduced here:

G(x) =
1

(γ2 − 1)(1 + η)
[β(γ2 − γ1)(x̂− I + η(x− I − r))(

x

x̂
)γ1 + γ2(1 + η)I + γ2ηr] − x,

The sophisticate’s threshold solves G(x) = 0 when x̂ = ( γ

γ−1
)I+r( η

1+η
)( γ

γ−1
) ≡ x̂SE, while the

naif’s threshold solves G(x) = 0 when x̂ = ( γ1

γ1−1
)I + r( η

1+η
)( γ1

γ1−1
) ≡ x̂NE. Thus, x̂SE < x̂NE

and it is sufficient to show that ∂x
∂x̂
|x̂=x̂SE > 0. By the implicit function theorem,

∂x

∂x̂
= −

∂G
∂x̂
∂G
∂x

.
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From the preceding proof, we have that ∂G
∂x
< 0. Turning to the numerator,

∂G

∂x̂
=

1

(γ2 − 1)(1 + η)

(

β(γ2 − γ1)(
x

x̂
)γ1+1(

1

x̂
)[(1 + η)x̂− γ1(x̂− I + η(x̂− I − r))]

)

which is strictly positive for any x̂ < x̂NE. Thus, ∂x
∂x̂

> 0, so xNE > xSE for any fixed r.

Moreover, when the goal is endogenous, the naif’s goal is greater than the sophisticate’s

(rNI > rSI). Since we have already shown that the threshold is increasing in r, then xNI >

xSI when r = x̂− I for each type of agent.

A.6 Proof of Proposition 5

In Proposition 3, I showed that the sophisticate’s first-best is achieved by stopping at the

threshold x∗ = ( γ1

γ1−1
)I, so that the first-best ex ante value of the option (vS∗

) equals v∗.

Given that the naif sets the goal x̂NI − I where x̂NI = ( γ1

γ1−1−η
)I, his true ex-ante option

value of waiting is given by Equation (29). To find the threshold xN that would maximize

ṽN , we have the first order condition:

∂ṽN

∂xN
= 0 = (x)γ1

(

(1 + η)(
1

xN
)γ1 − γ1(

1

xN
)γ1+1[xN − I + η(xN − x̂NI)]

)

= (x)γ1(
1

xN
)γ1+1(1 + η)(γ1 − 1)(x̂NI − xN),

which holds when xNI = x̂N . Thus, the upper bound on the naif’s option value of waiting is

given by ṽN(x) = (x̂NI −I)( x
x̂NI )γ1 . But we have shown that the option value of waiting when

there is zero comparative utility is maximized at x∗. Since x̂NI > x∗, then ṽN∗

(x) < vS∗

(x).

A.7 Verification

To verify that the constructed current value function w is optimal for any given r ≥ 0, note

that Equation (7) implies that any solution must satisfy the following two conditions for all

x ∈ (0,∞), whether the agent is sophisticated or naive:

w(x, r) ≥ x− I + η(x− I − r) (46)

0 ≥ −ρw(x, r) + λ(βv(x, r̂) − w(x, r)) + µx(
∂w

∂x
) +

1

2
σ2x2(

∂2w

∂x2
). (47)

Let x denote current self’s stopping threshold and x̂ denote the (perceived) future self’s

stopping threshold. By construction, w(x, r) = x− I + η(x− I − r) when x ≥ x so equation
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(46) holds with equality. When x < x, w(x, r) is of the form w(x, r) = A1x
γ1 +A2x

γ2 , where

γ2 ≥ γ1 > 1, A1 > 0, and A2 > 0. Since w(x, r) is convex and increasing, it must lie above

the line x− I + η(x− I − r) for all x < x.

Whether the agent is sophisticated or naive, Equation (47) holds with equality when

x < x by construction. Define the function J(x) as follows:

J(x) = −ρw(x, r) + λ(βv(x, r̂) − w(x, r)) + µx(
∂w

∂x
) +

1

2
σ2x2(

∂2w

∂x2
)

When x ≥ x, we have w(x, r) = x− I + η(x− I − r). Since we have shown that x ≤ x̂ (with

equality only if the individual is sophisticated), then v(x, r) = x− I + η(x− I − r) if x ≥ x.

Then we have

J(x) = −ρ[x− I + η(x− I − r)] + λ (β[x− I + η(x− I − r)] − [x− I + η(x− I − r)]) + µx(1 + η)

= (1 + η)[µ− ρ− λ(1 − β)]x+ [ρ+ λ(1 − β)][(1 + η)I + ηr],

which is strictly decreasing in x since µ < ρ. We have previously shown that ∂x
∂x̂
> 0, and

recall that x̂SE < x̂NE and x = x̂SE when x̂ = x̂SE. So it is sufficient to show that J(x̂SE) < 0

to satisfy Equation (47).

J(x) ≤ J(x̂S)

= [(1 + η)I + rη](
1

γ − 1
)[γµ− ρ− λ(1 − β)]

= [(1 + η)I + rη](
1

γ − 1
)[β(µγ1 − ρ) + (1 − β)(µγ2 − ρ− λ)].

Recall that γ1 > 1 satisfies 0 = −ρ+µγ1+ 1
2
σ2γ1(γ1−1). Then µγ1−ρ = −1

2
σ2γ1(γ1−1) < 0.

Likewise, γ2 > 1 satisfies 0 = −(ρ+λ)+µγ2+
1
2
σ2γ2(γ2−1), so µγ2−ρ−λ = −1

2
σ2γ2(γ2−1) <

0. Thus, J(x) ≤ J(x̂S) < 0. Since xSE < xNE, then Equation (47) is also satisfied when the

agent is naive. Therefore, the constructed value function w is at least as good as the value

function generated by any alternative Markov strategy.

A.8 Proof of Proposition 7

Since the linear comparison utility function is a special case of the general comparison utility

function ψ(·), Proposition 6 is a special case of Proposition 7. Choosing a goal to maximize

total utility from an ex-ante perspective is equivalent to self 0’s problem of choosing r̂ that

maximizes v(x, r̂) in its wait region described by Equation (11), where he anticipates future

threshold x̂(r̂). When the comparison utility function is linear, then x̂ = xSE(γ1).
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Consider a comparison utility function given by ψ(x − I − r), where ψ(·) exhibits the

following properties:

A1. ψ(y) is continuous and thrice differentiable for all y.

A2. ψ(0) = 0.

A3. ψ(y) is increasing everywhere: ψ′(y) ≥ 0, ∀y ∈ R.

A4. ψ(y) is concave: ψ′′(y) ≤ 0, ∀y ∈ R.

A5. ψ(y)′′′ ≥ 0, ∀y ∈ R.

The case studied thus far, in which the comparison utility function is linear, corresponds

to the case in which ψ′(y) = η and ψ′′(y) = 0 for all y ∈ R. A1-A3 are standard and

intuitive features of comparison utility. A4 implies that when ψ′′(y) < 0 everywhere, the

agent is diminishingly sensitive to gains and increasingly sensitive to losses. While the

former is a feature of Kahneman and Tversky’s (1979) value function, the latter property is

less commonly assumed. Given that the effects of time discounting in the optimal stopping

problem bias the agent toward setting goals that are lower than anticipated (and realized)

outcomes, the key region of interest is that of gains, and its feature is consistent with

previous work.46 When ψ′′(y) < 0 everywhere, comparison utility is asymmetric across gains

and losses, and the agent exhibits loss aversion. We also can obtain an exact mapping to

ψ(·) through an alternative model. A formally equivalent specification is that the comparison

utility function is linear, but the agent faces convex costs, incurred upon stopping, of setting

a goal that deviates from his actual net terminal payoff, whether that goal is below or above

his realized outcome.47 A5 is a regularity condition.

When ψ(·) is non-linear, we must derive the optimal stopping threshold, which, as in the

linear case, is determined by joining the waiting and stopping regions of the value function.

It is only the stopping region that now changes, since the comparison of an outcome against

the goal upon stopping differs. Then the optimal stopping threshold xNL given a goal r is

given by the following implicit function:

0 = (γ − 1)xNL − γI + γψ(xNL − I − r) − xNLψ′(xNL − I − r), (48)

46Moreover, the assumption of increasing sensitivity to losses can be interpreted as a regularity condition,
to ensure that the continuation value function can be single-peaked, but is not strictly necessary to obtain
a positive optimal goal.

47Costs that rise more quickly with the gap between the goal and the expected payoff thus correspond to
a ψ(·) that is more concave.
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where we can verify that, unsurprisingly, xNL is increasing in r and decreasing in γ given

assumptions A1-A4. As in the linear case, the optimal aspirational goal r∗ is chosen to

maximize the continuation value function v(x, r̂) in its wait region, where the comparison

utility is now evaluated non-linearly according to ψ(·) and xNL(r̂) is given by Equation (48):

r∗ = argmax
r̂

v(x, r̂) = argmax
r̂

[xNL − I + ψ(xNL − I − r̂)](
x

xNL
)γ1 . (49)

An optimal, non-degenerate aspirational goal (i.e. r∗ > −I) must satisfy the first-order

condition, which is equivalent to finding the r∗ such that

xNLψ′′(xNL − I − r∗)[−γ + γ1(1 + ψ′(xNL − I − r∗)]

− γ(γ1 − 1)ψ′(xNL − I − r∗)(1 + ψ′(xNL − I − r∗)) = 0, (50)

where xNL(r∗) is given by (48). The second term of (50) is non-positive for all values of r∗

by A3. Since ψ(·) is concave, the first term is only positive if γ > γ1(1 + ψ′(xNL − I − r∗)),

where the right-hand side is greater than γ1. Unsurprisingly, setting a non-generate goal

is only desirable if it is needed to correct impulsiveness, which must be sufficiently high

to counteract the marginal benefit of setting a lower goal.48 Moreover, the first term of

(50) must be sufficiently positive for the equality to hold, which implies that ψ′′(·) must

be sufficiently negative. The incentive to set a very low goal diminishes when the marginal

benefit of exceeding it decreases sufficiently quickly.

To verify that r∗ is a maximum, we need to check the second-order condition. The first

derivative can be written as

∂v

∂r
= (

x

xNL
)γ1

(

xNL[
∂xNL

∂r
(1 + ψ′) − ψ′] − γ1(

∂xNL

∂r
)(xNL − I + ψ)

)

. (51)

Evaluated at r∗, the sign of ∂v2

∂2r
is given by the sign of the second term of (51). Given that

Equation (50) must hold at r∗, the following must hold at r∗ if it exists:

∂xNL

∂r
|r=r∗ = (

∂ψ′(xNL − I − r∗)

1 + ψ′(xNL − I − r∗)
)(

γ

γ − γ1

) (52)

xNL(1 + ψ′(xNL − I − r∗)) = γ[xNL − I + ψ(xNL − I − r∗)]. (53)

Note that γ > γ1 at r∗. Using these two facts and Equation (50), we need ∂v2

∂2r
(r∗) < 0, where

48Note that this condition has a clear analog to the case in which goals are expectations over outcomes. As
described in Proposition 3, a given degree of reference dependence is only welfare improving if impulsiveness
is sufficiently severe relative to marginal comparison utility.
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I suppress the argument for ψ(·) for brevity:

∂v2

∂2r
|r=r∗ = −

γ(γ1 − 1)ψ′

(γ − γ1)(1 + ψ′)
+
∂2xNL

∂r2
|r=r∗ [(γ − γ1)(x

NL − I + ψ)] < 0,

where the first term is negative and the second is positive. Evaluating ∂2xNL

∂r2 |r=r∗ , the second-

order condition is satisfied when the following upper bound on ψ′′′(xNL − I − r∗) holds:

ψ′′′(xNL − I − r∗)K(r∗) < L(r∗)M(r∗), (54)

where

K(r∗) = xNL(
xNL − I − ψ

γ − 1 − ψ′
)

(

[γ − γ1(1 + ψ′)]3

(γ − γ1)2(1 + ψ′)3

)

,

L(r∗) =
γ(γ1 − 1)ψ′

(γ − γ1)2(1 + ψ′)(γ − 1 − ψ′)
,

M(r∗) = (γ − γ1)(γ − 1 − ψ′) − [γ − γ1(1 + ψ′)[2ψ′ + γ − γ1(1 + ψ′)].

We can verify that K(r∗), L(r∗), and M(r∗) are positive, so the upper bound on ψ′′′(xNL −

I − r∗) is positive. Given properties A3, A4, and A5, a ψ(·) satisfying the second-order

condition exists. Thus, an optimal r∗ > −I exists when the Equations (50) and (54) are

satisfied.

Thus, comparison utility must diminish sufficiently quickly in gains for the agent to prefer

setting a non-degenerate aspirational goal. If either of these conditions is not satisfied at a

given goal r, then the left-hand side of (50) is negative and the optimal aspirational goal

is the lowest possible. Note that when ψ(·) is linear, Equation (50) cannot hold and the

left-hand side is negative, implying that the optimal aspirational goal is the lowest possible,

as stated in Proposition (6).

Given these findings, it is evident that setting an optimal aspirational goal that is realistic

(r∗ = xNL − I) is simply a special case in which the agent sets an aspiration goal that

coincides with his outcome. But it is only ex-ante optimal when the conditions described

in Proposition (7) are met when xNL(r∗) − I − r∗ = 0. In particular, the marginal benefit

of setting a goal slightly lower than is achievable must be diminishing sufficiently quickly at

the origin, implying that he must be sufficiently loss averse over small stakes in order to set

a realistic goal.
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A.8.1 Comparative Statics for xNL

Using the implicit function theorem and suppressing the argument for ψ for brevity, we have

that ∂x
∂r

is:
∂x

∂r
=

γψ′(x− I − r) − xψ′′(x− I − r)

(γ − 1)[1 + ψ′(x− I − r)] − xψ′′(x− I − r)
, (55)

which is positive whenever ψ′′(y) ≤ 0, so ∂x
∂r
> 0 for all r ∈ [−I,∞). We can also verify that

∂x
∂r
< 1. The implicit function theorem also yields ∂x

∂γ
:

∂x

∂γ
= −

x− I + ψ(x− I − r)

(γ − 1)[1 + ψ′(x− I − r)] − xψ′′(x− I − r)
, (56)

which is clearly negative since x− I+ψ(x− I−r) ≥ 0 (otherwise, the agent would be better

off never stopping).

The optimal threshold xNL is given by the implicit function described by Equation (48).

For x to be defined and positive, I assume that ψ′(x−I−r) < γ−1 for all x−I−r ∈ [−I,∞).

To see that I − ψ(xNL − I − r) > 0, suppose that it is negative, implying that xNL < 0.

But if xNL < 0, then ψ(xNL − I − r) < 0 because ψ(0) = 0 and ψ′(y) ≥ 0 for all y. This

implies that I − ψ(xNL − I − r) > 0, since I > 0, which is a contradiction. Note that xNL

is equivalent to Equation (20) when ψ(·) is linear.

Differentiating Equation (11) and suppressing the argument for ψ(·) for brevity we obtain:

∂v

∂r
= [

1

(γ − 1)(1 + ψ′) − xψ′′
][

I − ψ

γ − 1 − ψ′
](
x

x
)γ1{xψ′′[−γ + γ1(1 + ψ′)] − γ(γ1 − 1)ψ′(1 + ψ′)}.

The first three terms are positive given our regularity conditions, so the sign of ∂v
∂r

is deter-

mined by the last term, which is Equation (50). If ψ(y) is linear, i.e. ψ′′(y) = 0 for all y ∈ R,

then ∂v
∂r
< 0 so the optimal r∗ is the lowest value of r possible.

A.9 Proof of Proposition 8

To show the first part, we can apply the implicit function theorem to Equation (50). Since

the second-order condition must be satisfied at the optimal r∗, it is sufficient to sign the

partial derivative of (50) with respect to γ at r∗, which is positive only if ∂2xNL

∂r∂γ
is sufficiently

high.49 This implies that ψ′′′(xNL − I − r∗) must be sufficiently high:

ψ′′′(xNL − I − r∗)P (r∗) > Q(r∗) + S(r∗) + U(r∗), (57)

49Algebraic details are omitted for brevity.
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where

P (r∗) =
[xNL(γ − γ1(1 + ψ′))]3

γ2(γ − γ1)2(1 + ψ′)(γ − 1 − ψ′)2
> 0,

Q(r∗) =
xNL(γ1 − 1)[−γψ′ − γ1(1 + f ′)]ψ′

γ(γ − γ1)(γ − 1 − ψ′)
< 0,

S(r∗) = −
xNL(γ − 1)(γ1 − 1)[γ − γ1(1 + ψ′)]2ψ′

γ(γ − γ1)2(γ − 1 − ψ′)2
< 0,

U(r∗) = −
γ2(γ1 − 1)(ψ′)2

(γ − γ1)[γ − γ1(1 + ψ′)]
< 0.

Thus, given that r∗ exists, ∂xNL

∂γ
> 0 if ψ′′′(xNL − I − r∗) exceeds a negative lower bound.

Given that ψ(·) must satisfy A5, such a ψ(·) exists satisfying both Equations (54) and (57).

To show the second part, we can apply the implicit function theorem to Equation (53):

∂xNL

∂γ
= −

−[xNL − I + ψ(xNL − I − r∗)]

−(γ − 1)(1 + ψ′(xNL − I − r∗)) + xNLψ′′(xNL − I − r∗)
.

The numerator is strictly negative by the optimality of xNL. The denominator is strictly

negative since γ > 1 and ψ′(y) ≥ 0 and ψ′′(y) ≤ 0 for all y ∈ R. Thus, ∂xNL

∂γ
< 0.

A.10 Proof of Proposition 9

The equilibrium defined by agents i and j’s optimal threshold functions, given by Equations

(30) and (31), is

xi =
γiI[ηγj + (1 + η)(γj − 1)]

(1 + η)2(γi − 1)(γj − 1) − η2γiγj

(58)

xj =
γjI[ηγi + (1 + η)(γi − 1)]

(1 + η)2(γi − 1)(γj − 1) − η2γiγj

, (59)

where γk = βkγ1 + (1 − βk)γ2 for k = i, j. The first two parts of Proposition 9 are obtained

by differentiating the equilibrium thresholds (58) and (59) directly. In particular, note that

lim
γj→∞

xi = (
(1 + 2η)γi

(1 + 2η)γi − (1 + η)2
)I ≥ (

γi

γi − 1
)I

lim
γj→∞

xj = (
(1 + 2η)γi − (1 + η)2

(1 + 2η)γi − (1 + η)
)I ≥ I,

with inequality only if γi → ∞ as well. This implies that as long as γi is finite, both agents

behave more patiently than they would in the absence of a goal.
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The third part of the proposition follows by noting that

xi − xj =
(γj − γi)(1 + η)I

(1 + η)2(γi − 1)(γj − 1) − η2γiγj

,

so xi − xj > 0 whenever γj − γi > 0.

A.11 Proof of Proposition 10

In an interpersonal equilibrium, agent i’s continuation value function is given by

vi(x, ri = xj − I) =

{

[xi − I + η(xi − xj)](
x
xi

)γ1 if x < xi

x− I + η(x− xj) if x ≥ xi,

where xi and xj are given by (58) and (59), respectively. To find the peer j∗ who maximizes

ex ante welfare, we can find the γ∗j such that the value of vi in its wait region is maximized

given equilibrium behavior. The first order condition is

∂vi

∂γj

= (
x

xi

)γ1

(∂xi

∂γj

+ η(
∂xi

∂γj

−
∂xj

∂γj

) − (
γ1

xi

)(
∂xi

∂γj

)[xi − I + η(xi − xj)]
)

.

After making the appropriate substitutions and simplifying, the first order condition is of

the following form:

∂vi

∂γj

= (
x

xi

)γ1
A

B(γj)
[C + γjD],

where

A = η(1 + η)2(γ1 − 1)[(γi − 1)(1 + η) + ηγi]I

B(γj) =
( 1

(γj − 1)(1 + η) + ηγj

)( 1

(1 + η)2(γi − 1)(γj − 1) − η2γiγj

)2

C = −(1 + η)

D = (1 + 2η).

Since A > 0, B(δ) > 0, C < 0, and D > 0, it is clear that vi is an asymmetric function of

γj , with a unique minimum at γ̂j < 0 such that ∂vi

∂γj
(γ̂j) = 0. Since γ̂j = 1+η

1+2η
< 1, then vi is

monotonically increasing for all γj ∈ (1,∞). Hence, the value function is maximized as γj → ∞.

Since γj = βjγ1 + (1 − βj)γ2, this is equivalent to desiring a peer such that β∗j < 1 and λ∗j → ∞.
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