
BUILDING PROGRAM EVALUATION INTO THE DESIGN 
OF PUBLIC RESEARCH SUPPORT PROGRAMS 

 
 

Adam B. Jaffe 
Brandeis University and National Bureau of Economic Research 

 
 
 
 

January 2002 
 
 
 

Forthcoming, Oxford Review of Economic Policy 
 
An earlier version of this paper was presented at TECHNOLOGICAL 
POLICY AND INNOVATION: Economic and Historical Perspectives, Paris,  
November 2000.  The research underlying this paper was supported by 
the U.S. National Science Foundation.  Lori Snyder provided valuable 
research assistance.  The views expressed are those of the author. 



I. INTRODUCTION 
It is widely accepted that, in the absence of policy intervention, the social 
rate of return to R&D expenditure exceeds the private rate, leading to a 
socially suboptimal rate of investment in R&D (Guellec and van 
Pottelsberghe, 2000).  Indeed, empirical evidence suggests that, even 
given the public support of R&D typical in OECD countries, the social 
rate of investment in R&D remains suboptimal (Griliches, 1992; Jones 
and Williams, 1998).  All of this suggests that finding ways to foster 
increased investment in R&D ought to be a significant public policy 
concern. 
 
Most OECD countries subsidize R&D via tax treatment that makes the 
after-tax cost of R&D considerably lower than that of other forms of 
investment (Guellec and van Pottelsberghe, 2000; Hall and Van Reenen, 
2000).  In addition, most countries have publicly funded research grant 
programs that attempt to funnel public resources directly to R&D 
projects that are believed to have particularly large social benefits.  Such 
research grant programs include those that support basic scientific 
research, R&D aimed at particular technical objectives of importance to 
the government (e.g., defense, health, environment), and ‘pre-competitive’ 
R&D intended to generate large spillovers, often with a collaborative 
component. 
 
Despite the prevalence of such programs, however, there is little 
consensus about their effectiveness.  Although there are a small number 
of studies that seem to demonstrate significant social returns to 
particular programs, there remain serious methodological questions 
about these findings (Klette, Møen and Griliches, 2000).  In the U.S., in 
particular, there remains a significant and politically important suspicion 
about the desirability of public grants for the support of commercial R&D 
(Yager and Schmidt, 1997).  At a conceptual level, there are two basic 
reasons why one might believe that public research grants would be 
socially ineffective, despite the existence of excess social returns to R&D.  
First, firms and other entities may not be as careful in their use of other 
people’s money as they are of their own, and hence may waste it or use it 
unproductively.  Second, public support may ‘crowd out’ private support, 
meaning that even if the public resources are used productively, there is 
no net increase in social investment in R&D.  Given that public resources 
must be raised via socially costly revenue mechanisms, society is worse 
off if total R&D investment remains the same while public funding 
replaces private funding. 
 
Much of the political debate surrounding such programs remains at the 
level of ideology.  Opponents question at a conceptual level how 
government programs can pick ‘winners and losers’ without interfering in 
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market processes to an undesirable extent, and point to expensive 
fiascoes such as the program to develop synthetic fossil fuels in the U.S. 
in the 1970s and 1980s.  Supporters rely on the already mentioned 
theoretical case for inadequate private incentives, and point to important 
examples of socially valuable technology that were produced or midwifed 
by the government, such as commercial jetliners, communications 
satellites, and the internet. 
 
I am not naïve about the political importance and staying power of 
ideology.  Yet as social scientists we have an obligation to try to bring 
facts to bear on these debates.  Given the evidence of excess social 
returns to R&D, combined with the questions about the effectiveness of 
public grants in increasing total R&D productively, the social 
productivity of these programs is fundamentally an empirical question.  
While we have made significant progress in providing some answers to 
this empirical question, I think we can do better. 
 
To my knowledge, all of the empirical work evaluating the effectiveness of 
these programs has been what I will call ‘after-the-fact’ evaluation, by 
which I mean an evaluation in which a researcher comes along sometime 
after a set of grants has been made, and attempts to infer the effect of 
those grants using observational data collected at that time.  In this 
paper, I explore the possibility of producing more compelling empirical 
evaluations by having the grant agencies anticipate the need for such 
evaluation and build certain features into the grant process to facilitate 
later evaluation.  In the U.S., the granting agencies now have an 
incentive to engage in this sort of activity because the Government 
Performance and Results Act of 1993 (P.L. 103-62, ‘GPRA’) requires all 
agencies to report systematically to the Office of Management and Budget 
on the ‘outputs’ and ‘outcomes’ of their programs.  After initially resisting 
the applicability of this law to their activities, research agencies are 
increasingly trying to figure out how to satisfy its mandates (Cozzens, 
1999). 
 
The focus of this paper is on how such program design for evaluation 
could produce data that would allow researchers to deal more effectively 
with the selectivity bias that is likely to plague any after-the-fact efforts 
to measure the effect of a research grant program.  I will discuss the 
possibility both of experimental designs, in which some grant decisions 
are made randomly, and of other, possibly less intrusive ways to 
structure grant decisions that might mitigate selectivity bias in 
subsequent evaluations. 
 
To be sure, selectivity bias is not the only problem that has to be solved 
in order to undertake convincing empirical evaluation of research grant 
programs.  Other important problems—which this paper will not 
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address—include: (1) how to measure research output of supported 
research entities; (2) how to measure the spillover benefits of funded 
research enjoyed by entities other than those that are supported; and (3) 
how to measure ‘transformational’ impacts whereby public support 
changes the nature of the research infrastructure, with possibly 
important long-lasting effects.1  More generally all of the discussion in 
this paper focuses on the marginal, short-run or ‘partial equilibrium’ 
effect of a program.  These modes of analysis cannot capture the long-
run, general equilibrium impacts that an overall program has on the 
economy.  This means that any estimates of program effectiveness that 
come out of these analyses would be useful for making decisions on 
program modification, expansion, or contraction at the margin, but 
would not be relevant in evaluating large changes or eliminating entire 
programs 
 
The organization of the paper is as follows.  The next section lays out the 
selectivity bias problem, and summarizes what approaches are available 
to deal with it in the context of ‘after-the-fact’ evaluation of research 
grant programs.  The third section discusses how grant programs might 
be changed to facilitate subsequent evaluation.  I discuss the use of 
‘randomization’ to generate ‘experimental’ data, as well as an alternative 
approach, based on what statisticians call the ‘regression discontinuity’ 
design.  This approach would require agencies to make only minor 
changes in their selection process, but would still offer significant 
benefits in allowing later evaluators to control for selection bias.  The 
fourth section briefly discusses the so-called ‘additionality’ question:  
whether or not public research support increases grantees’ total research 
spending.  The final section provides concluding comments, including 
brief consideration of the political economy of better program evaluation. 
 
II. THE SELECTION BIAS PROBLEM 

A. A Canonical Research Grant Program 
To begin, it is useful to have in mind a concrete, if somewhat stylized 
picture of how the research grant process works.  Consider a public 
agency that disburses money for research on the following basis: 
 

1. A legislative or higher-level executive agency establishes a 
budget of money available to be spent on a particular kind of 
research or research in a given substantive area. 

 

                                       
1 These and other broader issues in research program evaluation are discussed in Jaffe, 
1998; Popper, 1999; Klette, Møen and Griliches, 2000, and Georghiou and Roessner, 
2000. 
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2. Non-governmental entities apply for this money by writing 
and submitting substantive research proposals.2  

 
3. The agency solicits from known outside experts in the field 

reviews or reports evaluating the proposals, possibly 
including a subjective numerical score for each proposal.  

 
4. A committee or ‘panel’ organized by the agency meets, 

reviews the proposals and the external referee reports, and 
ranks the proposals in terms of priority for funding.  This 
ranking may be incomplete, i.e., proposals may be classified 
into groups assigned different priorities, but within which no 
ranking is made.  

 
5. An agency official then decides which proposals to fund, and 

how much money to grant to each applicant.  This decision 
is based on the recommendations of the panel, the official’s 
own judgement about the proposals, and other criteria not 
related to proposal quality, such as diversity of gender, race, 
geography and type of institution, or balancing of the grant 
portfolio by scientific fields.  

 
6. Successful applicants are funded in the form of a ‘grant’, the 

distinguishing feature of which is that receipt of the funds is 
not conditional on the production of specified research 
outputs.  

 
B. The Selection Bias Problem 

The selection problem that arises in attempting to assess the impact of 
this kind of program is widely recognized. Klette, Møen and Griliches 
(2000) provide a useful overview, and Heckman, et al. (1998) give a 
rigorous statistical treatment.  As a basis for discussion, consider the 
following version of the standard model: 
 
Yit =biDi + lXit + ai + mt + ωit + eit  (1) 
 
where Yit is the research output of applicant i in period t,3 Di is a dummy 
variable that is unity if individual i receives a grant, and bi is the effect 
                                       
2 The submitting entities would be firms, in the case of commercial research support 
programs, or academic researchers or other non-profit researchers in the case of basic 
science support programs.  While much of the literature has focused on support of 
commercial research, evaluating programs that support basic research raises many of 
the same conceptual issues.  Some programs target narrower kinds of institutions, such 
as joint ventures or collaborative research groups.  Again, many of the same issues 
arise in evaluation. 
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for applicant i of receiving a grant.  Xit is a vector of observable 
determinants of output (e.g., firm size, age of researcher).  The 
unobservable determinants of research output are reflected by the last 
four terms.  There is a time-invariant ‘applicant effect’ (ai ), and a time-
period effect common to all applicants (mt ).  The usual error term that is 
assumed to be uncorrelated with the X’s and D is represented by eit.  The 
only non-standard entry is ωit , which represents period- and applicant-
specific variation in research productivity that is unobservable by the 
econometrician, but observable by the granting agency.  It could 
represent agency officials’ personal knowledge of the applicants.  It could 
also represent the quality of the specific research project proposed to the 
agency, which the agency or other reviewers may be able to determine is 
better (or worse) than the time-invariant quality of the applicant itself 
captured by ai.  Note that while I use the word ‘applicant’ throughout to 
describe potential researchers, I assume that the equation applies to a 
population of potential applicants that includes some that never actually 
apply for funds. 
 
Because the effect of the grant program is allowed to vary by applicant, 
our goal is to measure the average impact.  Further, this average will be 
different for different groups of actual or potential applicants.  For the 
purpose of benefit/cost analysis, we would like to know E(biΩD), the 
average effect of the grant program for those entities receiving grants.  
Note that, at this point, the impact of the program is associated with a 
dichotomous grant/no grant condition; I return below to the question of 
whether the magnitude of the research grant matters.  In this way, the 
question being examined is the classic one of determining the 
effectiveness of a ‘treatment’ that is given to a non-random fraction of 
some population.  We wish to determine the average effect of treatment 
on the treated group. 
 
The obvious way to do this is to estimate some version of Equation (1) on 
a sample of applicants who did and did not receive grant funding, and 
use the regression coefficient on the treatment dummy as our measure of 
the treatment effect.  I now consider what kinds of regression analyses of 
this general form might yield ‘good’ estimates of the average treatment 
effect. 
 
I presume that the agency chooses whom to fund by attempting to 
maximize the impact of its funding, subject to its budget constraint and 
conditional on the information it possesses.  If the world is described by 

                                                                                                                  
3 I note again that I am ignoring the problem of how one actually measures research 
output.  A related issue that I also ignore is the likelihood of long and variable lags 
between the receipt of the research grant and its effect, if any, on research output. 
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Equation (1), this problem reduces to ordering the projects according to 
their bi’s and choosing as many of the highest bi-projects as fit in the 
budget.  Note that, in and of itself, such selection does not create any 
selectivity bias.  If the bi are uncorrelated with everything else, we could 
estimate Equation (1) by Ordinary Least Squares, and the coefficient on 
the treatment dummy would tell us E(biΩD), which is what we want.4 
 
The selection bias problem arises because we presume that bi is 
correlated with ai and ωit across i.  That is, the projects that are the best 
candidates for funding—in the sense of maximizing the impact of public 
support—are also the projects that would have the largest expected 
output in the absence of funding.5  This means that selection on bi 
makes E(ai + ωitΩD)> 0, which biases the regression estimate of E(biΩD).6 
 

C. Empirical Strategies for Mitigating Selection Bias in ‘After-
the-Fact’ Evaluations 

Regression with controls.  The simplest approach to eliminating 
correlation between Di and the error term is to include in the regression 
variables believed to ‘control for’ the unobserved effects.  For example, 
Arora and Gambardella (1998) estimate a version of Equation (1) for all 
economists who applied for NSF funding over a five-year period, some of 
whom were funded and some of whom were not.  They used impact-
weighted publications in a five-year window following the grant decision 
as a measure of research output.  They included in the regression as a 
control for ai the impact-weighted publications in the five years prior to 
the grant decision.  They also included, as a control for ωit, the average 
outside-reviewer score received by the proposals. 
 
There is, of course, no way to know whether any such set of controls 
adequately represents the information possessed by the funding agency.  
This is particularly true with relation to the quality of the different 

                                       
4 Of course, we could not determine the unconditional or population average for the 
treatment effect, but that average has little policy relevance because we don’t 
contemplate ‘treating’ the entire population. 
5 The extent of ex-ante correlation between the treatment effect and the productivity in 
the absence of treatment may vary depending on the agency mission.  But it is hard to 
imagine a situation in which one could be reasonably confident that the treatment effect 
is independent of baseline productivity.  Note that the treatment effect could be 
negatively correlated with expected performance in the absence of treatment, if some 
applicants ‘need’ public support because their performance would suffer badly without 
it.  In this case, selectivity bias would lead the regression to underestimate the average 
treatment impact. 
6 For a formal and detailed discussion, see Heckman, et al. (1998).  Kauko (1996) 
discusses the problem of selection bias in evaluation of R&D subsidy programs. 
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proposals, as distinct from the quality of the applicant.  Indeed, if it were 
possible to predict agency funding decisions on the basis of a regression 
on observable characteristics, one would have to question the rather 
significant social resources that these agencies typically expend on their 
subjective decision processes. 
 
Matched samples of treated and untreated entities.  An approach that is 
closely related to regression with controls is to compare treated entities 
to a sample of untreated entities that is drawn to resemble, as closely as 
possible, the treated entities, with respect to all observable 
characteristics that are believed to be correlated with likely performance 
(Brown, Curlee and Elliott, 1995).7  Again, the difficulty is that it seems 
unlikely that similarity with respect to these observable attributes is 
sufficient to avoid the likelihood that the expected performance of the 
selected group would exceed that of the control group even without 
treatment. 
 
Fixed effects or ‘difference in differences’.  The time-invariant 
unobservable ai  

                                      

can be eliminated from Equation (1) by taking the 
difference in performance after treatment as compared to the 
performance before treatment.  If such a difference is taken also for 
untreated entities, then common time effects mt are also eliminated by 
using the difference between the average before/after difference for the 
two groups (conditional on the difference in the X’s) as the estimate of 
the treatment effect.  Compared to the above approaches, this approach 
has the advantage of eliminating any need to find observable correlates of 
the unobserved productivity difference.  In a recent careful study, for 
example, Branstetter and Sakakibara (2000) show that Japanese funding 
of research consortia increased the research output of the participating 
firms, in the sense that the output of these firms increased during and 
after their funding more than output of nonfunded firms increased over 
the same period. 
 
The limitation of this approach is that it only controls for time-invariant 
unobservables.  To the extent that the agency can and does evaluate the 
proposed project distinctly from the proposing entity, the resulting 
selection bias is not eliminated by differencing.  In addition, one could 
imagine other sources of unobserved performance differences that vary 
across individuals and time.  For example, applicants may decide to 
enter the grant competition when they have been enjoying unusually 
good (or bad?) recent performance.  Any unobserved variation of this 
kind makes the differences estimator biased; differencing eliminates the 

 
7 Lerner (1999) used this approach to assess the impact of Small Business Innovation 
Research (SBIR) funding on the R&D of small firms. 
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time-invariant ai, but introduces a new error related to the deviation in 
the previous period from the applicant’s ‘normal’ performance.  Indeed, 
depending on the relative magnitude of time-invariant and time-varying 
individual effects, differencing could produce estimates that are more 
biased than simple regression estimates. 
 
Selection models/instrumental variables.  The final approach relies on a 
model of the selection process to control explicitly for the conditional 
dependence of Di on the unobservables.  Identification of this approach 
derives from an exclusion restriction, which comes from either a variable 
that affects the probability of selection but does not affect performance, 
or an assumption about the functional form of the relationship between 
the unobservables and the dependent variable.  Subject to the validity of 
this restriction, this approach provides valid estimates of the treatment 
effect regardless of the nature of the unobservables and the selection 
agency’s knowledge of them. 
 
The most familiar example of this approach is the latent variable model, 
in which it is assumed that selection occurs when an unobserved index 
surpasses some threshold value.  The index or latent variable is assumed 
to depend on some observables plus an error drawn from a parametric 
distribution.  If the determinants of the latent variable are all elements of 
the vector X in Equation (1), then the exclusion restriction that identifies 
the model is that the particular function of those variables created by 
their interplay with the parametric distribution of the error in the 
selection equation and the selection threshold is excluded from Equation 
(1). 
 
The latent variable model is closely related to the instrumental variables 
approach, in which instruments that predict selection but not 
performance are used to estimate the effect of selection in Equation (1) 
consistently.8  The difficulty in implementing this approach is in finding 
variables that affect selection that are not related to expected 
performance.  The classic examples of this approach to the selection 
problem are ones in which institutional ‘quirks’ introduce observable 
correlates of selection that are not related to expected performance.9  In 
the case of research funding programs, the most likely candidates for 
instruments are variations in the available budget and various kinds of 
‘affirmative action’ in the selection process.  Wallsten (2000) looked at a 
                                       
8 Conceptually, the latent variable approach can be thought of as using the parametric 
distribution for the latent error to create an instrument for selection even where there 
are no variables that predict selection but not performance. 
9 For example, Angrist (1990) used the Vietnam-era draft lottery to create an instrument 
for military service, allowing an estimate of the effect of such service on later wages 
controlling for selection bias into the military. 
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sample of firms that received Small Business Innovation Research (SBIR) 
grants from various Federal agencies over a number of years, and a set of 
similar firms that did not.  For each firm (whether funded or not), he 
calculates a weighted-average available budget in each year using firm-
agency weights derived from the SIC of the firms and the SIC distribution 
of firms funded by each agency.  He shows that using this effective 
budget as an instrument for SBIR funding greatly reduces the apparent 
impact of SBIR funding on performance in an equation analogous to 
Equation (1).10 
 
I am not aware of any attempts to use affirmative-action related variables 
as instruments in this kind of analysis (although the possibility was 
noted by Arora and Gambordella, 1998).  If being female, minority, from 
a heartland state, or from a ‘second tier’ institution increases the 
probability of funding, conditional on expected performance, then these 
attributes are possible instruments.  Similarly, if agency decisionmakers 
attempt to balance their funded portfolios across technical subfields, 
then proposals from subfields that are underrepresented in the proposal 
pool have a higher conditional likelihood of funding, so that subfield 
dummies might also be possible instruments.11  The question regarding 
this approach is whether these considerations have enough impact on 
the overall selection probability to constitute adequately powerful 
instruments for selection. 
 
III. DESIGNING RESEARCH GRANT PROGRAMS TO FACILITATE 

SUBSEQUENT EVALUATION 
The above discussion suggests that there are empirical strategies for 
measuring treatment effects despite the selection problem.  This section 
considers whether changes in the grant decision process could improve 
the ability of subsequent evaluations to provide reliable measurement of 
the treatment effect. 
 

A. Randomization 
The conceptually straightforward way to solve the selection problem is to 
run an experiment.  That is, since the ‘problem’ is that the likelihood of 
treatment is correlated with expected performance, the simplest solution 

                                       
10 Lichtenberg (1988) used a similar instrument for defense procurement funding in a 
study of its impact on firm-level R&D. 
11 A technical problem with using technical subfields as instruments is that, even if true 
expected performance is not a function of subfield, measured performance might be.  
That is, if IO economists publish more (or fewer) papers than labor economists, 
controlling for quality, then you would want to have subfield dummies in estimating 
Equation (1) using papers as the measure of output or performance.  This would 
invalidate the subfield dummies as instruments for selection. 
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is to make the probability of selection conditional on ai + ωit the same as 
the unconditional probability.  To do this the agency would identify a 
group of ‘potential grantees’ and randomly award grants within this 
group, meaning that the probability of receiving the grant would be the 
same for all members of the group.12  If this were done, then a later 
evaluation could estimate the average treatment effect for the group by 
estimating Equation (1) on all group members, funded or not.  Because 
the probability of having been treated is the same for all group members, 
the estimated treatment effect is not subject to selectivity bias.13 
 
The group of potential awardees could be identified in a variety of 
different ways.  In particular, the agency could eliminate from the 
application pool a subset of clearly inferior proposals, and then award 
funding randomly only to the remainder.  This prior ‘selection’ into the 
potentially funded group would not introduce any bias into the estimate 
of the average treatment effect for the treated group.  That is, the 
estimated effect could not be extrapolated to the group of applicants who 
were screened out in advance, but it would be valid, as an average, for 
the entire group that was given a chance of funding. 
 
Multiple subgroups could be randomized in this way.  For example, the 
set of applicants could be divided into 3 groups:  ‘high priority’, 
‘marginal’, and ‘rejects’, with the probability of receiving funding higher 
for the ‘high priority’ group than the ‘marginal’ group, and no funds 
awarded to the ‘rejects’.  The estimation of Equation (1) could then be 
carried out separately for the two groups, yielding distinct estimates of 
the average treatment effect for the ‘high priority’ and ‘marginal’ groups.  
If an overall average treatment effect for the treated groups was desired, 
a weighted average of the two estimated effects could be calculated. 
 
The obvious political and ethical concern about this approach is that 
some ‘high priority’ proposals are left unfunded.14  Of course, one could 
                                       
12 Randomization might also be desirable independent of evaluation objectives.  Brezis 
(2000) presents a model in which the selection agency introduces randomization to 
make sure that a larger fraction of radical proposals—which are assumed to be 
undervalued by the review process—are funded. 
13 There is, of course, selection by the applicants into the public process.  This means 
that even randomly awarded grantees could not be compared to entities that did not 
apply for funding.  But the treatment effect could be estimated from data on grantees 
and rejected applicants.  Of course, the estimated effect could not then be extrapolated 
to the population of non-applicants.  Further, the running of the experiment might 
change the applicant pool, so that the observed treatment effect might not be what 
occurs when the applications are generated in the absence of the experiment. 
14 I remain personally puzzled as to why it is okay to randomize when people’s lives are 
at stake (drug trials), but not when research money is at stake.  When I put this 
question to an agency official who was quite hostile to randomization, he pointed out to 
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make the actual probability of funding in the high priority group quite 
high.  The only limitation on how high this probability could be made is 
that the absolute number of unfunded proposals must be great enough 
to produce estimates of Equation (1) with adequate precision.15  In the 
limit, one could make the probability of funding in the ‘high priority’ 
group unity, and randomize only within the marginal group.  The 
consequence would be that one would have an estimate of the average 
effect of treatment for marginal applicants, but no estimate of the 
treatment effect for the high priority applicants.  Since ‘high priority’ 
ought to mean that the agency expects the treatment effect to be large, 
this estimate of the treatment effect for the marginal group should be an 
underestimate of the overall average treatment effect for the treated 
group.  One would then have bounds on the overall average treatment 
effect, running from the estimate from the randomized marginal group, 
up to the selection-biased estimate derived from Equation (1) in the full 
sample.  It is unclear, however, whether the value of the lower bound 
derived from the randomized marginal group is worth the political pain of 
introducing randomization. 
 

B. The Regression-Discontinuity Design 
Thus the problem with using randomization to eliminate selectivity bias 
is that one must either deny funding to high-priority proposals, or else 
accept that one cannot produce an unbiased estimate of the treatment 
effect for such proposals.  I believe that an alternative approach, based 
on the regression-discontinuity design, offers a more attractive balance 
between political feasibility and statistical outcome.16 
 
The regression-discontinuity (‘RD’) design was introduced by 
Thistlethwaite and Campbell (1960); good overviews appear in Campbell 
(1984) and Angrist and Lavy (1999).  The RD technique utilizes a 
discontinuity in the probability of selection that occurs at a particular 
‘threshold’ with respect to some index of ‘quality’ to identify the 
treatment effect separately from the impact of quality.  To make this 
concrete in the current context, imagine that the review panel or 
                                                                                                                  
me that once a drug has been demonstrated to be effective, random trials are ended and 
all patients are given the drug.  When I commented that the relevance of this to 
research funding depends on an assumption that the efficacy of funding has been 
demonstrated, he responded ‘of course’. 
15 It is also unclear whether it would be perceived as less ‘unfair’ to have a small 
fraction of deserving proposals unfunded than to have a larger fraction unfunded. 
16 The only previous application of the RD design to a research grant program that I 
have been able to identify is Carter, Winkler and Biddle (1987), who evaluated the NIH 
Research Career Development Award (‘RCDA’).  They found that RCDA recipients had 
significantly greater research output than non-recipients, but that, after controlling for 
the selection effect, there was no detectable effect of the RCDA ‘treatment’ itself. 
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committee ranks each applicant from best to worst, and records each 
applicant’s ranking.17  The selection official then ‘draws a line’ through 
this ranking, indicating that, if quality were the only issue, proposals 
above the line would be funded and those below would not.  The location 
of this threshold is recorded.  The official then makes the actual award 
decisions; these can deviate from those implied by the threshold, so long 
as the deviations are for affirmative action or other non-expected-
performance-related reasons. 
 
Equation (1) could later be estimated on data from funded and unfunded 
projects, using the quality ranking as one of the X’s, and using an 
indicator variable for ranking above the threshold as an instrument for 
selection.  The quality ranking controls, by construction, for anything 
that the selection process knows about ai and ωit.  And, conditional on 
this ranking variable, the threshold-indicator variable is a valid 
instrument for selection.  In effect, we have used the known discontinuity 
in selection probability at the threshold to create an exclusion restriction 
based on functional form:  the threshold indicator variable is simply a 
non-linear function of the quality rank.  But this functional form 
assumption is founded in the selection process itself, not imposed on the 
distribution of an unobserved latent variable.18 
 
Without further assumptions, this approach only identifies the treatment 
effect at the threshold quality level.  In this, it is comparable in the 
information it generates to the use of randomization only for a group of 
‘marginal’ applicants.  Why this is true can be seen from Figure 1.  The 
figure plots a hypothetical relationship between selection rank and 
research output.  As drawn, output increases with rank, treatment 
increases output, and the treatment effect increases with rank.  That is, 
the best proposals have both higher expected output without government 
support, and also a larger increase if they are supported.  ‘Most’ of the 
proposals above the threshold were funded, and most of those below 
were not, but the figure shows a few above-threshold ones that were not 
funded and vice versa, to reflect the idea that random deviations from the 
threshold may have occurred. 
 

                                       
17 It is not actually necessary that all proposals be ranked.  In particular, if there is a 
group of clear rejects at the bottom, they need not be ranked.  Also, there could be ties, 
i.e., groups of applicants judged to be equally meritorious. 
18 If data are available regarding the attributes that form the basis of non-expected-
performance-related deviations from the funding decisions implied by the threshold 
(e.g., gender, race, proposing institution, etc.), then additional instruments related to 
these characteristics would, in principle, improve the first-stage fit between the 
instruments and the selection dummy, and hence increase the power of the procedure. 
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The smooth dashed line represents a regression estimate of the 
relationship between rank and output for the funded proposals, and the 
smooth solid line an estimate of this relationship for the unfunded 
proposals.  Both of these are identified from the observed data, and, 
therefore, so is the gap between them at the threshold.  Of course, this is 
only a lower bound to the average treatment effect for the treated group.  
Now, if we are willing to extrapolate the solid trend line beyond the 
threshold—into a range in which we have very few observations—then we 
can estimate the treatment effect for each of the funded proposals, and 
its overall average.19  This requires assumptions about the functional 
form of the rank/output relationship that are presumed to hold over the 
entire rank range.20 
 
In summary then, both ‘randomization at the margin’ and the regression-
discontinuity design can, at least in principle, provide a basis for 
unbiased estimates of the treatment effect for the marginal proposals.  
This is, however, only a lower bound for the average treatment effect.  To 
do better through randomization requires denying funding to a 
(statistically) significant number of highly ranked proposals.  To do better 
via the regression-discontinuity design requires willingness to rely on 
functional form assumptions for the relationship between selection rank 
and output, in order to ‘predict’ the unobserved expected performance of 
the best proposals had they not been funded. 
 
IV. THE ‘ADDITIONALITY’ QUESTION AND THE PRODUCTIVITY 

OF PUBLIC RESEARCH FUNDING 
Much discussion regarding the performance of public research support 
programs (particularly those that support firms) has focused not on 
research output, but on the related question of ‘additionality’—the extent 
to which public grants lead to an increase in overall research expenditure 
by the funded firms.  Results on this question are mixed.21  Wallsten 
(2000) found that the SBIR program ‘crowds out’ the firm’s own research 
spending approximately dollar-for-dollar, reversing the finding of Lerner 
(1999) for this same program.  Branstetter and Sakakibara (2000) found 

                                       
19 A similar extrapolation would be necessary to estimate what the treatment effect 
would have been if the rejects had been funded.  But this is less interesting. 
20 Note that affirmative action or other deviations from the threshold rule help in this 
respect.  This is not surprising, because they generate, in effect, a small amount of 
‘random’ data that provide additional identification. 
21 David, Hall and Toole (2000) survey the econometric evidence on this issue.  They 
find that a plurality of studies at the firm level finds ‘crowding out’ effects, while studies 
at higher levels of aggregation more often find ‘crowding in’.  They also note that 
difficulties of econometric interpretation make it difficult to draw robust conclusions 
from these studies. 
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that Japanese funding of research consortia increased the R&D of the 
participating firms.  Lach (2000) found that research support of 
commercial firms in Israel increased the firms’ total R&D expenditure by 
$1.41 for every dollar of public research expenditure. 
 
Measuring the effect of government support on total research 
expenditure is, of course, just as subject to the selection bias problem as 
measuring the effect on research output.  Those firms (or academic 
researchers) funded by the government are likely to be those with the 
best ideas, meaning that they will have more incentive to spend their 
own money, and more ability to garner support from third parties, than 
those that are not funded.  Any regression analysis that compares the 
research expenditure of supported firms to those that are not supported 
has to deal with all of the problems discussed above.  As emphasized by 
David and Hall (2000), however, the additionality question is also 
plagued by confusion regarding the underlying model of how firms, 
agencies, and other parties make research spending decisions. 
 
Wallsten (2000) describes the straightforward argument for crowding out.  
If there are short-run diminishing returns to R&D, and the firm spends 
its own money up to the point where the expected marginal return is 
equal to the cost of funds, infusion of funds by the government will cause 
the firm to reduce its own expenditure dollar for dollar, so that the total 
funding (and hence the expected marginal product) remains the same.  
Some grant agencies, however, require cost-sharing or co-funding of 
research proposals by the proposing firm.  Depending on how this is 
implemented, it could be interpreted to mean that (if selected) the firm 
gets additional public funding for every additional dollar of funding it 
provides itself or from other sources.  If the co-funding rules work this 
way, the effect is to reduce the marginal cost of research to the firm.  A 
profit-maximizing firm facing a downward sloping marginal research 
returns schedule will always increase total expenditure when the 
marginal cost falls, precluding the dollar-for-dollar crowding out result.  
The amount by which total R&D increases with public funds would 
depend on how rapidly marginal productivity diminishes, suggesting 
some unknown degree of partial crowding out. 
 
Another reason that the Wallsten argument for crowding out may not 
apply is that the funding agency is often picking certain projects to fund, 
presumably because these particular projects are believed to have large 
social returns.  If such projects are far down on the private marginal 
returns schedule, then they would not be undertaken by an 
unsubsidized firm, but may be undertaken if the government is willing to 
fund them.  In this case, total R&D expenditure increases and there may 
be no crowding out. 
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If the only reason for public support of private research were a belief that 
spillovers cause a gap between the private and social rates of return, 
then one could think about this issue in terms of the relative size of the 
spillover gap and the crowding out effect.  In many contexts, however, we 
think that the issue is not limited to profit-maximizing firms choosing the 
wrong point on the marginal product of research schedule.  In some 
cases this is because the researchers are not in a for-profit setting.  Even 
with respect to firms, however, we believe that there are constraints on 
the financing of R&D. 
 
The presence of financing constraints creates the possibility of ‘crowding 
in’ (Diamond, 1998) of private research funding.  Screening of proposals 
for likely success is a costly and uncertain process.  The public funding 
decision represents certification of a proposal as ‘high quality’.  Non-
public sources of funding may free-ride on the public review process, or, 
even if they make their own assessments, know that their assessment is 
uncertain and be influenced by the assessment of government experts.  
This ‘certification’ or ‘halo’ effect is believed by research grant agencies in 
the U.S. to be an important factor in increasing the total research 
spending of grant recipients. 
 
Once one recognizes these complexities, the relationship of the 
additionality question to the underlying public policy issues becomes 
ambiguous.  I presume that the underlying policy motivation for GPRA is 
that, in some sense or on some level, we want to perform social benefit-
cost analysis of these programs.  We want to know the marginal (or more 
realistically, the average) social product of these public expenditures.  
Additionality, in the sense discussed here, is neither necessary nor 
sufficient for public funding to yield a positive social product.  The 
consequences of either crowding out or crowding in depend on the 
opportunity cost of the alternative funds.  For example, if alternative 
sources of funding are in fixed supply—for example, the money available 
for research from non-profit foundations—the policy implications of 
crowding out are unclear.  It could be that public funding ‘crowds out’ 
foundation funding of government-supported researchers, pushing the 
foundation funding over to other (productive) researchers whom we don’t 
observe.  In this case, we might observe no impact of public support on 
the supported researchers, yet the social product could still be large. 22  
Conversely, a ‘halo’ effect could simply induce a zero-sum redistribution 

                                       
22 An analogous argument could be made with respect to commercial support programs 
and venture capital finance, though the argument for a fixed overall supply of venture 
capital for funding of research seems more questionable. 
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of available non-governmental funding. 23  Thus the extent to which 
crowding out limits or crowding in enhances the social productivity of 
public research funding depends on the elasticity of supply of alternative 
sources of funds. 
 
Unfortunately, similar reasoning leads to similar conclusions regarding 
what can be learned from estimation of Equation (1) without regard to 
additionality, i.e., ‘solving out’ the effects of government support on total 
funding and measuring the overall impact of the public funding decision 
on research output.  A positive average treatment effect in Equation (1) is 
not sufficient for inferring a positive social product of the government 
funding; it could reflect totally unproductive use of the government funds 
combined with a ‘halo’ effect that pulls in (productive) funds from 
elsewhere.  If those other funds are in fixed supply, this is not socially 
useful.  And a positive effect on research output is not necessary for a 
research support program to be productive, because a lack of treatment 
effect could reflect total crowding out, which, as discussed above, could 
still yield positive social product if other research funding sources are in 
fixed supply. 
 
Thus the crucial question is not the extent of additionality per se, but 
rather how, in the presence of the possibility of crowding out or crowding 
in, can one measure the social product of the public research funding 
itself.  To do this, we need to modify Equation (1) to incorporate explicitly 
both the productivity of public research support, and its impact on non-
governmental spending: 
 
Y =l1X + γPP + γGG + a + m + ω + e  (2a) 
 
P =l2Z + δiG + a + m + ω + e (2b) 
 
where P and G represent private and government research expenditure, 
respectively, Z is a vector of characteristics that affect the level of private 
funding, and the i and t subscripts have been suppressed for 
convenience.24 The ‘treatment effect’ from government research support 
has been separated into two pieces: γG reflects the direct effect, while the 
sign of δ tells whether we have crowding in or out.  Identification of this 
                                       
23 Diamond (1998) finds evidence of ‘crowding in’ in aggregate totals for research 
support.  This suggests that the supply of non-governmental research support is not 
fixed. 
24 Different functional forms that capture the same ideas are also possible.  For 
example, one might want to do γ log(P + γGG) rather than an additive form.  Also, one 
might think that, once the public expenditure is present, there should be no effect of 
selection per se, other than through a possible halo effect that is captured in the second 
equation. 

 16



model raises all of the issues discussed above, plus the need for 
instruments for private expenditure.25 
 
The welfare-analytic implications of γG are straightforward; it captures 
the average productivity of the funds expended by the government.  But, 
as discussed above, the welfare consequences of δ depend on 
assumptions about the larger financing system with which the 
government agency interacts.  This takes us back to where we started, 
which was to note that measuring the direct impacts of public funding on 
the funded entities is only a small piece of the overall evaluation 
problem. 
 
V. CONCLUSION (RUMINATIONS ON POLITICAL ECONOMY) 
The pressure on public research agencies to engage in systematic 
evaluation of their programs is likely to continue to grow.  While much 
can be learned from what I have called ‘after-the-fact’ evaluations, the 
reliability and ‘believability’ of these results in the face of presumed 
selection bias could be increased by building evaluation needs into the 
grant process.  I and others have previously harped on randomization as 
the ‘gold standard’ for program evaluation (Jaffe, 1998).  I now believe 
that the regression-discontinuity design offers a better tradeoff between 
statistical benefits and resistance to implementation.  In particular, 
randomization at the margin, which seems like something that one might 
be able to ‘sell’ both to a funding agency and to its constituents, has the 
major drawback of providing only a lower bound on the overall effect of 
agency funding on research outputs.  While the RD design requires 
functional form assumptions to do better than this, we are frequently 
willing to make such assumptions.26 
 
I believe that the use of this technique would be good social science.  
Whether it would be good for the agencies in question—or for public 
policy more generally—is a much harder question.  As social scientists 
we are interested in the parameters of Equation (2) even though it is 
difficult to know exactly how they relate to benefit cost analysis.  We are 
comfortable examining this tiny piece of a very complicated puzzle, 
ignoring as we do so that our output measures are only proxies for what 

                                       
25 One might also argue that G is endogenous, if the size of the grant (and not just the 
selection decision) is related to the unobservables or to P. 
26 One might ask whether functional form assumptions could be used in conjunction 
with randomization at the margin in order to produce an estimate of the overall 
treatment effect.  This would require recording of the selection ranking, in order to 
estimate the relationship between ranking and output.  Once one has recorded the 
ranking, then you essentially have the RD design.  Given the RD design, there is 
relatively little benefit to randomizing near the threshold. 
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we care about, that we are not looking at the spillovers that are perhaps 
the true reason for these programs, that we have a hard time capturing 
the long-term effects of funding on research careers, and that we are not 
measuring the ‘general equilibrium’ interactions between the funded 
researchers and the rest of the system.  We also understand that failing 
to reject a null hypothesis is not the same as showing the null to be true.  
I am, of course, aware that the political process may ignore these 
subtleties and misuse research findings no matter how many caveats 
appear in the papers reporting those findings.  I therefore will not 
pretend to know the answer regarding the overall social benefit-cost ratio 
of undertaking these kinds of evaluations. 
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Figure 1
Analysis of Hypothetical Data from a Regression-Discontinuity Design
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