II. Non-degenerate PT

A. Perturbation series

\[H = H_0 + \delta H \]

Non degenerate \(\Rightarrow\) 3 orthonormal basis \(\{|\psi^{(n)}\}\)

\[\langle \psi^{(n)} | H_0 | \psi^{(n)} \rangle = E^{(n)} \]

\[E^{(n)} \neq E^{(m)} \text{ if } n \neq m \]

(1) Now we want to find \(E_{\text{pert}}\) of

\[H|\psi^{(n)}\rangle = E^{(n)} |\psi^{(n)}\rangle + \delta |\psi^{(n)}\rangle \]

\[E^{(n)} = E^{(n)} + \delta E^{(n)} + \delta^2 E^{(n)} + \cdots \]

Solve \(\delta E^{(n)}\) iteratively

\[(H_0 + \delta H)|\psi^{(n)}\rangle = E^{(n)} |\psi^{(n)}\rangle + \delta |\psi^{(n)}\rangle + \delta^2 |\psi^{(n)}\rangle + \cdots \]
\[\psi(0) : H_0 |n(0)\rangle + H_1 |n(0)\rangle = E_0 |n(0)\rangle + E_1 |n(0)\rangle \]

1. To find \(E_n \) : take inner product with \(|n(0)\rangle \)

\[\langle n(0) | H_0 | n(0) \rangle = E_n - \langle n(0) | H_1 | n(0) \rangle \]

\[E_n = \langle n(0) | H_0 | n(0) \rangle \]

Simple but very very important.

2. To find \(|n(0)\rangle \) : take inner product with \(|n(0)\rangle \)

\[\langle n(0) | H_0 | n(0) \rangle + \langle n(0) | H_1 | n(0) \rangle \]

\[= E_n \langle n(0) | n(0) \rangle + E_1 \langle n(0) | n(0) \rangle \]

\[= (E_n - E_1) \langle n(0) | n(0) \rangle \]

\[\sum_{n} \langle n | n(0) \rangle | n(0) \rangle = \sum_{n} \frac{\langle n | n(0) \rangle | n(0) \rangle}{E_n - E_1} \]

3. In general, we have

\[|n\rangle = |n(0)\rangle + \sum_{n} \frac{\langle n | n(0) \rangle | n(0) \rangle}{E_n - E(0)} \]

\[\text{How to deal with this?} \]

\[\text{We will have to choose} \]

\[\text{a normalization for } |n\rangle \]
Choice #1: $\langle \eta^{(m)} | \eta^{(m)} \rangle = 1$

$\eta^{(m)} | \eta^{(m)} \rangle = 0$

$\xi = 0$

Choice #2: $| \eta \rangle = 2 \frac{1}{2} | \eta \rangle$

$\langle \eta | \eta \rangle = 1 = 2 \langle \eta | \eta \rangle \Rightarrow 2 = (\langle \eta | \eta \rangle)^2$

$\langle \eta | \eta \rangle = (\langle \eta^{(m)} | \eta^{(m)} \rangle + \xi \langle \eta^{(m)} | \eta^{(m)} \rangle \langle \eta^{(m)} | \eta^{(m)} \rangle + \xi^2 \langle \eta^{(m)} | \eta^{(m)} \rangle + \ldots)$

$= 1 + \xi^2 \langle \eta^{(m)} | \eta^{(m)} \rangle + \ldots$

$1 + O(\xi^3)$

So at this order, choices #1, 2 are the same.
C. Second order PT

$\mathcal{O}(\alpha^2)$:

$$H_0 |\psi^{(0)}\rangle \rightarrow H_0 |\psi^{(0)}\rangle = e^{\alpha |\psi^{(0)}\rangle} \rightarrow e^{\alpha |\psi^{(0)}\rangle} \rightarrow E_0^{(0)} |\psi^{(0)}\rangle - E_0^{(0)} |\psi^{(0)}\rangle$$

(i) Energy shift: take inner product with $C_n^{(0)}$

$$\langle n^{(0)} | H_0 - E_0^{(0)} | n^{(0)} \rangle = 0$$

$$E_0^{(2)} = \langle n^{(0)} | H_0 | n^{(0)} \rangle - E_0^{(0)} \langle n^{(0)} | n^{(0)} \rangle$$

(ii) State: take inner product with $C_n^{(1)}$, summation

$$E_0^{(2)} \langle n^{(0)} | n^{(0)} \rangle + \langle n^{(0)} | H_0 | n^{(0)} \rangle = E_0^{(2)} \langle n^{(0)} | n^{(0)} \rangle$$

$$E_0^{(2)} = \langle n^{(0)} | n^{(0)} \rangle = \langle n^{(0)} | H_0 | n^{(0)} \rangle - E_0^{(0)} \langle n^{(0)} | n^{(0)} \rangle$$

$$E_0^{(2)}$$

$$= \sum_{n,m} \frac{\langle n^{(0)} | H_0 | m^{(0)} \rangle \langle m^{(0)} | H_0 | n^{(0)} \rangle}{(E_0^{(0)} - E_0^{(0)}) (E_0^{(0)} - E_0^{(0)2})}$$
\[|n^{(0)}\rangle = \sum_{m,n} \frac{\langle m^{(0)}|H|n^{(0)}\rangle |m^{(0)}\rangle |n^{(0)}\rangle}{(E_n^{(0)} - E_m^{(0)})^2} \]

\[= \sum_{m,n} \frac{\langle m^{(0)}|H_2|n^{(0)}\rangle \langle r^{(0)}|H_1|l^{(0)}\rangle}{(E_n^{(0)} - E_m^{(0)})^2} \]

(1) Wavefunction renormalization (Baym)

\[Z_n = \langle n | \langle n |^{-\frac{1}{2}} \]

\[= 1 - \frac{1}{2} \sum_{m,n} \frac{|\langle m^{(0)}|H_2|n^{(0)}\rangle|^2}{(E_n^{(0)} - E_m^{(0)})^2} \]

\[= \frac{2}{\partial E_n} \left(E_n^{(0)} + \langle n^{(0)}|H_1|l^{(0)}\rangle \right) + \epsilon \sum_{m,n} \frac{|\langle m^{(0)}|H_2|n^{(0)}\rangle|^2}{E_n^{(0)} - E_m^{(0)}} \]

\[Z_n = \frac{2}{\partial E_n} \left(E_n^{(0)} + \langle n^{(0)}|H_1|l^{(0)}\rangle \right) \]

\[\mu \text{th element, } E_n \text{ fixed.} \]

Due to all orders in \(\epsilon \).
D. Example

\[H_0 = -\frac{p^2}{2m} + \frac{1}{2} m \omega^2 x^2 \]

\[H_0 = i \hbar \frac{\partial}{\partial x} \]

\[E_n^{(0)} = \hbar \omega n \left(\frac{\omega}{2\hbar} \right) \text{ ; } n \geq 0 \]

\[a = \left(\frac{\mu^2}{2\hbar} \right)^{1/2} x + \frac{i}{(2\mu \hbar)^{1/2}} \hbar \text{ ; } [a, a^\dagger] = 1 \]

\[a|0\rangle = 0 \text{ ; } a^\dagger |n\rangle = \sqrt{n} |n-1\rangle \text{ ; } a |n\rangle = \sqrt{n} |n-1\rangle \]

\[E_n^{(i)} = \left(\frac{\hbar \omega}{2m} \right)^{1/2} \sqrt{n} |n\rangle |n\rangle \text{ ; } n = 0, 1, 2, \ldots \]

Note: \[\int dx |V(x)|^2 q(x) = 0 \]

\[E_{\text{even}} = \sum_n \left\{ \left| \frac{\omega_{n}^{(i)}(\text{even}) |n\rangle |n\rangle \right|^2 \frac{1}{n!} \right\} = \frac{\hbar \omega^2}{2m} \]

\[E_{\text{odd}} = \frac{\hbar \omega^2}{2m} \left[\frac{n}{n+1} + \frac{n+1}{n} \right] = \frac{\hbar \omega^2}{2m} \]

Exact solution:

\[V = \frac{1}{2} m \omega^2 x^2 + \frac{1}{2} m \omega^2 x^2 + \frac{1}{2} \frac{-\hbar \omega^2}{2m} x^2 \]

\[\frac{1}{2} m \omega^2 (x + \frac{\hbar \omega}{m \omega})^2 = \frac{\hbar \omega^2}{2m} \]

same energy, \[n = \frac{\hbar \omega}{m \omega} x = \frac{\hbar \omega}{m \omega} \]
III. Closely spaced energy levels

In non-degenerate T IPT, higher orders in \(\xi \) involve higher orders of expressions like

\[
\frac{<\mu \xi | H_{\text{def}} | \nu \xi>}{E_{\mu \xi} - E_{\nu \xi}} \quad (\ast)
\]

(a) If this is not small, the perturbation series will not converge and low orders (the orders we can calculate) do not provide a good approximation.

(b) If the spectrum is degenerate, then \((\ast)\) diverges for some \(\xi \).

This includes fairly standard examples:

- non-rel. Coulomb Hamiltonian energies \(E_n = \frac{1}{2n^2} \) for \(n^2 \) states

- 3d spherically symmetric \(\text{SHO} \)

\[H = \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{1}{2} m \omega^2 x^2 \]
A First order degenerate PT

Typically we are handed some orthonormal basis

$$|\psi_{n}\rangle = \alpha_n |\omega_n\rangle$$

$$H_{0}|\psi_{n}\rangle = E_n |\psi_{n}\rangle$$

Let $$H = H_0 + H_{ij}$$, how do we expect the spectrum to behave?

Let us assume $$H_{ij}$$ is not degenerate.

The energy eigenstates will be

$$|\psi_{n}\rangle \sim |\psi_{n}\rangle^{(0)} + \epsilon |\psi_{n}\rangle^{(1)} + ...$$

There is no reason for this to be $$= |\psi_{n}\rangle$$ for some fixed $$\epsilon$$.

Instead,

$$|\psi_{n}\rangle \sim |\psi_{n}\rangle^{(0)} + \epsilon_{\alpha n} |\psi_{n}\rangle^{(\alpha)}$$

If we try to find $$|\psi_{n}\rangle$$ by starting with $$|\psi_{n}\rangle^{(0)}$$, the change will not in general be small.
Example spin-½ particle

\[H = \sum_{i} \alpha_i + \mathbf{p}^2 \]

\[H_0 = \frac{p^2}{2m} \]

\[\psi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \psi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \]

\[E_1 = \gamma + \epsilon \]

\[E_2 = \gamma - \epsilon \]

Suppose any orthonormal vectors are a basis of energy eigenvectors.

If we attempt to perturb around, say

\[\psi_+ = (1) \]

\[\psi_- = (0) \]

then the difference between \(\psi_+ \) and \(\psi_- \) is finite as \(\epsilon \to 0 \).
(3) Procedure:

We are given the basis \(\{ \{1, j = \alpha \} \} \).

We want to find

\[\{ i, j = \alpha \} = \{ i, j = \alpha \}^0 + 2 \{ i, j = \alpha \}^0 \]

as before:

\[(H_0 - E_0^0) \{ i, j = \alpha \} = \{ i, j = \alpha \}^0 \]

\(O(\varepsilon^2) \) : automatically solved

\[\begin{align*}
(2c_{\alpha}) & (H_0 - E_0^0) \{ i, j = \alpha \} = (E_0^0 - H_0) \{ i, j = \alpha \}^0 \\
& (2c_{\alpha}) \\
& (H_0 - E_0^0) \{ i, j = \alpha \} = (E_0^0 - H_0) \{ i, j = \alpha \}^0 \\
& (2c_{\alpha}) \\
& (H_0 - E_0^0) \{ i, j = \alpha \} = (E_0^0 - H_0) \{ i, j = \alpha \}^0 \\
\end{align*} \]

(4) Finding \(E_0^1 \)

\[\vec{A} = \sum_{\alpha} \{ i, j = \alpha \} \{ i, j = \alpha \}^0 \]

\[\{ i, j = \alpha \} = \sum_{\alpha} \{ i, j = \alpha \} \{ i, j = \alpha \}^0 \]

Take inner product with \(\{ i, \{ j = \beta \} \} \) LHS of \((*)\) vanishes:

\[\sum_{\alpha} \{ i, \{ j = \beta \} \} H_0 \{ i, j = \alpha \} \{ i, j = \alpha \}^0 = E_0^0 \{ i, \{ j = \beta \} \} \{ i, j = \alpha \}^0 \]

\[(H_0)_{\alpha, \alpha} U(\alpha)_{\alpha} = E_0^0 U(\alpha)_{\alpha} \]

\(\{ i, j = \alpha \} \) is an eigenstate of \(H_0 \) in the subspace \(\{ i, j = \beta \} \)

\(E_0^1 \) is an eigenvector.
In general, we can write \(H \) in block form:

\[
\begin{pmatrix}
 H_{11} & H_{12} & H_{13} \\
 H_{21} & H_{22} & H_{23} \\
 H_{31} & H_{32} & H_{33}
\end{pmatrix}
\]

where \(H \) is a \(d \times d \) dimensional matrix.

At first order in \(\epsilon \), we diagonalize \(H \); the eigenvalues are the first order shifts \(E_{\alpha} \).

(b) Finding \(\langle \lambda | \gamma \rangle \)

1. Take inner product of (1) with \(\psi_{\alpha}^{\dagger} \) from (1):

\[
\langle \psi_{\alpha} | H | \gamma \rangle = \langle \psi_{\alpha} | H_{\alpha \beta} | \gamma \rangle
\]

2. Use \(\psi_{\alpha}^{\dagger} | \psi_{\alpha} \rangle = 0 \) and (3):

\[
\langle \psi_{\alpha} | H | \gamma \rangle = \langle \psi_{\alpha} | H_{\alpha \beta} | \gamma \rangle = \langle \psi_{\alpha} | H | \gamma \rangle
\]

3. Use (4) and (5):

\[
\langle \psi_{\alpha} | H | \gamma \rangle = \frac{\langle \psi_{\alpha} | H_{\alpha \beta} | \gamma \rangle}{E_{\alpha} - E_{\beta}}
\]

4. Use (6):

\[
\langle 0 | H | \gamma \rangle = \frac{\langle 0 | H_{\alpha \beta} | \gamma \rangle}{E_{\alpha} - E_{\beta}}
\]
We can choose our basis such that \\
\langle \psi_{jm} | \psi_{jm'} \rangle = \delta_{mn} \delta_{m'm}.

\[L_{jm} = \sum \langle \psi_{jm} | \psi_{jm'} \rangle (\epsilon_{jm'} - \epsilon_{jm}) \]

If we set \(C = 0 \), \(\langle \psi_{jm} L_{jm} \psi_{jm'} \rangle = \delta_{mn} \delta_{m'm} \)

\[\langle \psi_{jm} \rangle = \sum \langle \psi_{jm} | \psi_{jm'} \rangle \frac{(\epsilon_{jm'}) - (\epsilon_{jm})}{\epsilon_{jm'} - \epsilon_{jm}} \]

\[\langle \psi_{jm} | \psi_{jm'} \rangle \]

\[\langle \psi_{jm} | \psi_{jm'} \rangle \frac{(\epsilon_{jm'}) - (\epsilon_{jm})}{\epsilon_{jm'} - \epsilon_{jm}} \]

\[\langle \psi_{jm} | \psi_{jm'} \rangle \frac{(\epsilon_{jm'}) - (\epsilon_{jm})}{\epsilon_{jm'} - \epsilon_{jm}} \]

(3) Example: Stark effect

Hydrogen atom in constant electric field (ignore spin)

\[E = E_z = q = E_z \]

For \(n = 1 \):

\[E_1 = \langle 1 | E_z | 1 \rangle \]

\[= \int d^3r \left| \psi(r) \right|^2 \epsilon \cos \theta \]

\[= \epsilon \]

\[= 0 \quad \text{(deduce from 'parity selection rule')} \]

\[\text{(must go to 2nd order M.E...)} \]
\[n = 2 \text{ states have a degeneracy:} \]
\[2S \text{ has } 2 \not= 0 \]
\[2P \quad l=1, m_s = \pm 1, 0 \]
\[\sum \text{ 4 states} \]

We want to diagonalize \(H = eEz \) in this subspace.

- Parity selection rules

\[\Pi: \psi_{(x,y,z)} \rightarrow \psi_{(-x,-y,-z)} \]
\[\Pi^2 = 1; \quad \Pi x \Pi y = -\Pi y \Pi x \]

Coulomb problem: \([H, \Pi] = 0 \Rightarrow \text{diagonalize both} \]

New \(\psi_{\pm m} = e^{\pm \frac{\pi m}{\cos \theta}} \psi_\theta \)

\[\Pi: (\theta, \phi) \rightarrow (\theta, \pi + \phi) \Rightarrow \psi_\theta \rightarrow (-1)^m \psi_{-m} \]
\[\langle \psi_{m'} | \Pi | \psi_{m''} \rangle = (-1)^{m'+m} \]
\[\Pi^2 = 0 \text{ unless } l = 0 \text{ or } l = \pm 2 \]

\[\text{Parity selection rule:} \]

Pathway only \(\langle 2S | 2, 2P, m_\sigma \rangle \) survives
Angular momentum selection rule:

\[z \propto \cos \theta \]

\[\langle w | \hat{L}_z | z \rangle \propto \sum_{\ell} e^{i\ell \theta} \langle \ell, m | z \rangle = 0 \]

But we know that already.

\[\langle \ell, m | z \rangle \]

Still degenerate at 1st order.

For the rest, must diagonalize:

\[
\begin{pmatrix}
0 & \langle 2\ell | \hat{E} \hat{z} | 2\ell, m, 0 \rangle \\
\langle 2\ell, m | \hat{E} \hat{z} | 2\ell \rangle & 0
\end{pmatrix}
\]

\[\langle 2\ell | \hat{E} \hat{z} | 2\ell, m, 0 \rangle = 0 \]

No other dimensionful \(\theta \)!

\[-3E_0 \]

\[\begin{pmatrix}
0 & -3E_0 \\
-3E_0 & 0
\end{pmatrix} \]

Has eigenvectors:

\[\psi_+ = \frac{1}{\sqrt{2}} (1, 1) \]

\[E^+ = 3E_0 \]

\[E^- = -3E_0 \]
(a) Higher order

- Let us assume degeneracy is completely split at first order (if not, the story is a bit complicated)

Locally diagonalized the Hamiltonian

\[H_0 + \begin{pmatrix} \epsilon_{11} & 0 & 0 \\ 0 & \epsilon_{22} & 0 \\ 0 & 0 & \epsilon_{33} \end{pmatrix} \]

Exactly, this Hamiltonian is nondegenerate (by definition). Now we confront \(H_1 \) as our unperturbed Hamiltonian and

\[H_1 = \begin{pmatrix} 0 & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{21} & 0 & \epsilon_{23} \\ \epsilon_{31} & \epsilon_{32} & 0 \end{pmatrix} \]

can be treated as a perturbation.
B. Nearly degenerate states

\[E \uparrow \quad (\mathbf{D}) \]
\[\quad \longrightarrow \quad \mathbf{V} \]
\[\mathbf{E} \mathbf{M} \quad \mathbf{E} \mathbf{M} \]

\[\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \]

\[\text{assume } E_{\mathbf{D}} - E_{\mathbf{M}} \ll \langle H_2 \rangle \]

\[H_3 = \begin{pmatrix} E_{\mathbf{D}} & E_{\mathbf{M}} \\ E_{\mathbf{M}} & E_{\mathbf{D}} \end{pmatrix} \]

\[\text{assume matrix elements are smaller than gap between typical states not in nearly-degenerate subspace.} \]

\[\begin{pmatrix} E_{\mathbf{D}} & 0 \\ 0 & E_{\mathbf{M}} \end{pmatrix} \rightarrow \begin{pmatrix} 0 & E_{\mathbf{M}} \\ E_{\mathbf{D}} & 0 \end{pmatrix} \]

\[V_1 \quad V_2 \]

\[\text{diagonalize these } V, \quad \text{using standard perturbation theory.} \]
To diagonalize V_z, we need merely work in the subspace D_z of nearly-degenerate eigenstates of H_0.

Call the eigenstates of H_0 living in D_z

$$|\tilde{k}\tilde{l}\tilde{m}\cdots\tilde{d}\rangle$$

with eigenvalues $E_\tilde{k}$ of H_0.

Call the remaining eigenstates of H_0

$$|\tilde{k}'\tilde{l}'\tilde{m}'\cdots\tilde{d}'\rangle$$

with eigenvalues $E_{\tilde{k}'}$ of H_0.

Now V_z appears in perturbation theory through expressions of the form

$$\frac{\langle \tilde{k}'|V_z|\tilde{k}\rangle}{E_{\tilde{k}'} - E_{\tilde{k}}}$$

which are (hopefully) not large.
Example:

Take S_2 to be 2-dimensional. We must then diagonalize:

$$
\begin{pmatrix}
E_1 & \psi \\
\psi^* & E_2
\end{pmatrix}
$$

Eigenvalue equation:

$$(E_i - \bar{v})(E_i - \bar{v}) = \mu_i^2 = 0$$

$$\bar{v} = \frac{1}{2}(E_i + E_2) \pm \sqrt{(E_i + E_2)^2 - 4E_iE_2 + 4\mu_i^2}$$

Exercise: read pp. 237-241 of Boyum (will have notes available)
Non-perturbative methods

I. Introduction

If energies are large compared to the scale of perturbations, they may work very badly.

Furthermore, there are cases where there is no obvious split

\[H = H_0 + \varepsilon H' \]

Nevertheless, we can estimate the energy of the ground state.
II. The variational method.

(1) The basic point

- Given a state $|\psi\rangle$,

$$\langle E \rangle = \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle}$$

Now insert $|\psi\rangle = \sum_n \alpha_n |n\rangle$ as eigenstates of H.

$$\langle E \rangle = \sum_n \frac{\langle \psi | H | n \rangle}{\langle \psi | \psi \rangle} = \sum_n E_n \frac{\langle n | \psi \rangle^2}{\langle \psi | \psi \rangle}$$

$$\geq E_0 \frac{\langle \psi | \psi \rangle}{\langle \psi | \psi \rangle} = E_0$$

Therefore we try to choose a state $|\psi\rangle$ to minimize $\langle E \rangle$.

- This technique is used when we cannot write $H = H_{\text{ex}} + H_{\text{int}}$ where H_{ex} and H_{int} are exactly solvable. Instead, we use physical intuition to choose a "trial family of "trial states" $|\psi_\alpha\rangle$ where α are some parameters, and minimize $\langle E \rangle$ by varying α.
(2) Examples - we will demonstrate and test this method on potentials for which we secretly know the answers.

(a) Infinite square well

\[V(x) = \begin{cases} 0 & |x| \leq L \\ \infty & |x| > L \end{cases} \]

\[\psi(x) = \frac{1}{\sqrt{2L}} \cos \left(\frac{n\pi x}{2L} \right) \quad E_n = \frac{n^2 \pi^2}{8L^2} \]

- Let us say we were ignorant of the precise solution. We know:

 (a) Wavefunction should vanish for \(x \geq L \)

 (b) Wavefunction should have no other nodes.

\[\begin{array}{c}
\text{guess} \quad 1x^2 - 1x^2 \\
\langle E \rangle = \frac{(4m_1)(2m_1)}{2\hbar^2} \left(\frac{\pi^2}{4m_1 L^2} \right)
\end{array} \]

\[\frac{d\langle E \rangle}{d\alpha} \Rightarrow \text{solution which is } \text{a minimum when } \alpha = \frac{\pi}{2}, 2.37 \]

\[\langle E \rangle = \left(\frac{5\hbar^2}{m_1 L^2} \right) E_0 \approx 1.000298 E_0 \]

\[\text{7% to accuracy} \]
\[\psi(x) = A_i \left[\left(\frac{2E_i}{\hbar^2} \right)^{1/3} (x - E_i) \right] \]

where \(\psi''(x) = 0 \) at even \(n \) nodes

\[\psi'(x) = 0 \] at odd \(n \) nodes

\[E_0 = \frac{h^2}{8m} \left(\frac{m^2R^2}{h^2} \right)^{1/3} \]

This involves a special function which might scare people.

Let us try a nice trial wave function. It should die off rapidly at infinity and have no nodes.

\[\phi(x) = \text{gaussian} \quad \psi(x) = (\frac{1}{\sqrt{2\pi}})^{1/2} e^{-ax^2} \]
\[\langle E \rangle = \int d^3x \, \psi^*(x) \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial r^2} + \frac{e^2}{4\pi \epsilon_0 r} \right) \psi \]

\[= \frac{\hbar^2}{{2m}} \left(\frac{\partial}{\partial r} \right)^2 \]

\[\frac{\partial}{\partial r} \langle E \rangle_m \bigg|_{r=\infty} = 0 \]

\[\Rightarrow \alpha = \left(\frac{\hbar^2}{2m} \right)^{\frac{1}{2}} \]

\[\langle E \rangle = \frac{1}{\hbar^2} \left[\frac{1}{r^2} + \frac{1}{r^3} \right] \left(\frac{8 \frac{\epsilon_0}{m}}{\hbar^2} \right)^{\frac{1}{2}} \]

\[0.813 \quad \text{compare to } 0.8086 \]

(3) Why does this work so well?

Let \(\langle \psi \rangle = \langle E_0 \rangle + \langle \delta \psi \rangle \)

\[\langle \delta \psi \rangle = \alpha \langle E_0 \rangle + \langle \delta \psi \rangle \quad \text{and choose} \]

\[\langle \delta \psi \rangle = \alpha \langle E_0 \rangle + \langle \delta \psi \rangle \quad \text{so} \quad \langle \delta \psi \rangle_1 \langle E_0 \rangle = 0 \]

\[\langle E \rangle = \frac{12 \alpha^2 \langle E_0 \rangle + \delta^2 \langle \psi_{11} | 1 | \psi_{11} \rangle}{1 + \alpha^2 \langle E_0 \rangle + \delta^2 \langle \psi_{11} | 1 | \psi_{11} \rangle} \]

\[= \langle E_0 \rangle + \frac{\delta^2}{1 + \alpha^2 \langle E_0 \rangle} \left(\langle \psi_{11} | 1 | \psi_{11} \rangle - \langle E_0 \psi_{11} | 1 | E_0 \psi_{11} \rangle \right) \]

\[\approx 0(\epsilon^2) \text{ for } 0(\epsilon) \text{ match in total wave function.} \]
(a) Back to helium:

\[\psi = \left(\frac{1}{\sqrt{a_0^3}} \right)^{1/2} e^{-\frac{r}{a_0}} \left(\frac{1}{3} \right)^{1/2} \left(\frac{1}{3} \right)^{-1/2} \]

Next we want to choose Z as our variational parameter.

\[E[Z] = -2 \left(\frac{\text{int}}{2Z^2} \right) \left(4Z^2 - \frac{2}{\text{int}} \right) \]

\[\text{minimum of } Z = \frac{27}{16} \]

\[E = -77.5 \text{ eV} \]

which is a marked improvement over previous solution.
C. Interpretation

\[\psi(x) \sim e^{\frac{-i}{\hbar} \int_{x_0}^{x} \left(\frac{p^2}{2m} + V(x') \right) dx'} \]

\[\psi(x_\alpha) = e^{\frac{-i}{\hbar} \int_{x_0}^{x_\alpha} \left(\frac{p^2}{2m} - \mu(x') \right) dx'} \]

\[\psi(x_\alpha) \sim \frac{1}{\sqrt{2\hbar}} \text{ for } \mu(x) \text{ as } V(x) \text{ and } \psi(x) \text{ as } \phi(x) \]

D. Tunneling

\[\psi(x) \sim \frac{1}{\sqrt{2\hbar}} e^{-\frac{i}{\hbar} \int_{x_0}^{x} \left(\frac{p^2}{2m} - \mu(x') \right) dx'} \]

\[\psi(x_\alpha) \sim \frac{1}{\sqrt{2\hbar}} e^{\frac{-i}{\hbar} \int_{x_0}^{x_\alpha} \left(\frac{p^2}{2m} - \mu(x') \right) dx'} \]

\[\psi(x_\alpha) = e^{\frac{-i}{\hbar} \int_{x_0}^{x_\alpha} \left(\frac{p^2}{2m} - \mu(x') \right) dx'} \]

The approximate tunneling occurs if \(E < \mu \) and the case \(p \to 0 \).

\[\psi(x) \sim \frac{1}{\sqrt{2\hbar}} \text{ for } V(x) \text{ as } \mu(x) \text{ and } \psi(x) \text{ as } \phi(x) \]

\[\psi(x_\alpha) \sim \frac{1}{\sqrt{2\hbar}} e^{\frac{-i}{\hbar} \int_{x_0}^{x_\alpha} \left(\frac{p^2}{2m} - \mu(x') \right) dx'} \]

\[\psi(x_\alpha) = e^{\frac{-i}{\hbar} \int_{x_0}^{x_\alpha} \left(\frac{p^2}{2m} - \mu(x') \right) dx'} \]
III. The WKB approximation

A. Short-wavelength limit

If \(\psi(x) \) varies rapidly enough, \(V(x) \) can be treated as constant.

\[
\psi(x) \sim A(x) e^{\frac{2i}{\hbar} \int V(x) \, dx}
\]

We need the wavelength to change very little over the course of 1 wavelength:

\[
\frac{\Delta \lambda}{\lambda} \ll 1 \Rightarrow \frac{\lambda \Delta \lambda}{\hbar} \ll 1
\]

\[
\Delta \lambda = \frac{\hbar}{pc} \ll \frac{\hbar}{2\pi \lambda(E-V_0)}
\]

\[
\Delta \lambda \ll \frac{\hbar}{2\pi \sqrt{2mV}} \ll 1
\]

This is a slight dodgy as \(E, \mu \), are dimensionful we need to talk about dimensionless numbers (e.g. ratios of dimensionful quantities) to talk about "small" or "large".
& Systematic expansion

\(\psi(\omega) = e^{i\phi(\omega)} = e^{-\frac{1}{2} \nabla^2 \varphi + \frac{2\omega}{c} (E-VG) \varphi} \), \(\psi = 0 \)

\(\nabla \psi = i \frac{\nabla \phi}{\hbar} e^{i\phi} \)

\(\nabla^2 \psi = i \frac{\nabla^2 \phi}{\hbar^2} e^{i\phi} - \frac{i}{\hbar^2} (\nabla \phi)^2 \)

\((\nabla \phi)^2 = 2m(E-VG) + \frac{\hbar^2}{\hbar^2} (\nabla \phi)^2 \)

Now let \(\psi = \psi_0 + \psi_1 + \psi_2 + \cdots \)

and solve order by order assuming \(\hbar \to 0 \), etc.

\(\nabla \psi_0 = \sqrt{2m(E-VG)} \) = \(\varphi(x) \)

\(\psi_0 = \int_{-\infty}^{x} dx' \sqrt{2m(E-VG)} \approx \int_{-\infty}^{x} dx' \varphi(x') \)

\(2\partial \psi_0 \partial \psi_1 + \cdots \chi_{\omega} \nabla \psi_0 \)

\(\nabla \psi_1 = \frac{\hbar^2}{2m} \nabla^2 \varphi_0 \)

\(\psi_1 = \frac{\hbar^2}{2m} \ln(p\varphi) + \frac{1}{2m} (\ln(p\varphi))^2 \)

\(\psi(x) \sim \frac{1}{p\varphi} \sum \varphi(x') \)

\(\psi(x) \sim \left(\frac{p\varphi}{p\varphi} \right)^{\frac{1}{2}} \right \}

\(\psi(\omega) \sim \left(\frac{p\varphi}{p\varphi} \right)^{\frac{1}{2}} \right \}

\(\psi(\omega) \sim \left(\frac{p\varphi}{p\varphi} \right)^{\frac{1}{2}} \right \} \)
C. Interpretation

a) Phase factor - energy eigenvalue
\[\psi(x,t) = e^{i\int \mathcal{L} dx} \]

- Interpretation: Feynman path integral

Recall:
\[\psi(x,t) = \int Dx(t)e^{i\frac{\mathcal{L}}{\hbar}} \]

(Asymptotic) "small-\(t \) limit": exponential oscillates very rapidly

\[\frac{\partial}{\partial x(t)} = 0 \]

But these are just the classical equations of motion.

\[\sum_{\text{causal solutions}} A(x(t))e^{i\int \mathcal{L} dx(t)} \]
(b) Prefactor

Probability of particle being in interval \([x, x+\delta x] \),
\[
\left(\frac{dx}{u(x)} \right) = \frac{1}{\hbar 0}\text{ for natural probability amplitude.}
\]

(c) Aside: Stationary phase approximation

Consider \(I = \int dx \ e^{i f(x)} \quad \alpha \gg 1 \)

\[
f(x) = \alpha f_n(x) + \frac{1}{2} \alpha^2 g_n(x) + \frac{1}{6} \alpha^3 \theta(x - x_0) + \ldots.
\]

\[
\implies I \approx \alpha f_n(x) e^{i E_n \alpha}.\]

\[\int f_n(x) dx \text{ correction to integrand}\]

\[
\approx I = \frac{1}{\alpha^2 \hbar} \int dy \ e^{i \left(\alpha y + \frac{1}{2} \alpha^2 g_n(y) + \ldots \right)}
\]

\[
\times \left(\frac{\alpha}{\hbar} \right)^\frac{1}{2} e^{i \alpha f_n(y)} (1 + O(\alpha^2), \ldots)
\]
Bound state problems

(3) The basic issue

\[V(x) \]

\[\psi(x) = \frac{1}{k(x)} e^{-\int_{x_0}^{x} dx' k(x')} \]

Region I

\[x < x_0 \]

(approximative)

(Will hold)

\[d_0 = \int_{x_0}^{x} dx \sqrt{2m(E - V(x))} \]

\[\frac{d}{dx} \left(\frac{2mE - V(x)}{4k(x)} \right) \]

should die out as \(x \to -\infty \)

\(\Rightarrow \) pick (2) sign for \(x_0 \) fixed

Region II

\[x \gg x_0 \]

Region III

\[x < x_0 \]

Typically: match to region

I, III - fixers \(\beta \)

\(\Psi \) square well.
For $x \to \pm \infty$ WKB approximation fails.

For $x \to x_{A,B}$ there are 2 methods for dealing with this.

1. Wavefunctions near turning points

 Expand $V(x)$ near $x = x_B$

 $V(x) \approx V(x_B) + (x - x_B) V_1 + (x - x_B)^2 V_2 + \cdots$

 where $V(x_B) = E$

 $\text{ISE: } \frac{-\hbar^2}{2m} \psi'' + \left[(x - x_B) V_1 - (x - x_B)^2 V_2 \right] \psi = 0$

 The quadratic term is small if $|x - x_B| \ll \frac{V_1}{V_2}$

 Now

 $\frac{-\hbar^2}{2m} \psi''(x) + (x - x_B) V_1 \psi(x) = 0$

 has an exact solution:

 Let $\psi(x) \equiv L(y)$

 $-\frac{\hbar^2}{2mL^2} \frac{d^2}{dy^2} \psi(y) - \frac{2mL^3}{\hbar^2} y \psi(y) = 0$

 $\Rightarrow \left[-\frac{\hbar^2}{2mL^2} + \frac{2mL^3}{\hbar^2} y \right] \psi(y) = 0$

 $L = \left(\frac{\hbar^2}{2mL^3} \right)^{1/2}$
How do we solve this? (E. Lundell, Lifschitz, App. b)

Let \(\psi = \int_{C} z(t)e^{gt} dt \)

\(\psi \) is independent of contour as long as asymptotic shaded region is fixed.

\[
-\nabla^{2} \psi + g \psi = \int_{C} -\epsilon \frac{\partial z(t)}{\partial t} e^{gt} + 2\epsilon \frac{\partial^{2} z(t)}{\partial t^{2}} e^{gt} = \int_{C} e^{gt} (2\epsilon \frac{\partial z(t)}{\partial t} + \epsilon^{2} \frac{\partial^{2} z(t)}{\partial t^{2}}) \Rightarrow z(t) = e^{-\frac{1}{2}gt}
\]

now we need to choose \(C \) such that this integral converges. For large \(t \), the \(t^{3} \) term dominates

\(\Rightarrow \text{Re}(t^{3}) > 0 \)

Furthermore, we want \(\psi \to 0 \) as \(t \to \infty \)

\(\Rightarrow \) do not asymptote to region (2)
\[\int_0^\infty \cos \left(\frac{1}{2} u^2 - uv \right) du = A_1(x) \]

- Now note first that for large enough \(y \), one could use the \(\text{WKB} \) approximation on \(A_1(y) \).

- Furthermore, by choosing \(C \) such that \(A_1(y) \) does not blow up as \(y \to \infty \), we have chosen our solution such that \(\psi \sim e^{-\frac{1}{\hbar} x^2} \).

For \(y \gg 1 \): \(A_1(y) \approx \frac{1}{2y} e^{-\frac{1}{2} y^2} \) (use \(\text{WKB} \) approximation)

\[g = \left(\frac{2\sqrt{\hbar}}{m} \right)^{\frac{1}{3}} (x-y) \]

which matches the WKB approximation.

\[\psi(x) \approx A_1 \frac{1}{\sqrt{\hbar}} e^{\frac{1}{2} x^2} \]

\text{Exercise: } when \(\Delta \) what \((x-y) \) is the \(\text{WKB} \) approximation compatible with linear approximation for \(U(x) \)?

\text{Note that this is valid under...}
For $x \in \mathbb{R}$, we can use the stationary phase approximation

$$
\psi = \frac{c_1}{i \pi} \cos \left(\frac{1}{i \hbar} \int_x^{x_0} p(x) \, dx + \frac{\pi}{4} \right)
$$

we have fixed A, B (up to a phase factor)

exercise: show this is a true stationary phase approximation.

Similarly, we can expand V near $x = x_0$, and do the same thing.

$$
\psi = \frac{c_2}{i \pi} \cos \left(\frac{1}{i \hbar} \int_{x_0}^{x} p(x) \, dx + \frac{\pi}{4} \right)
$$

These two must match — up to a factor of $\frac{c_1}{c_2} \exp \left(\frac{-i \pi}{4} \right)$

$$
\frac{1}{i \hbar} \int_x^{x_0} p(x') \, dx' - \frac{\pi}{4} = -\frac{1}{i \hbar} \int_{x_0}^{x} p(x') + \frac{\pi}{4} + 2 \pi n
$$

$$
\frac{1}{i \hbar} \int_{x_0}^{x} p(x') \, dx' = (2n + \frac{1}{2}) \pi
$$

Bohr-Sommerfeld quantization rule.
Example: consider a p-orbital in the potential $V = k|x|$

\[\int p(x) \, dx = (\pi + \frac{3}{2})n^2 \]

\[U(x) = \begin{cases}
0 & \text{if } |x| < \alpha \\
V_0 & \text{if } |x| = \alpha \\
\infty & \text{if } |x| > \alpha
\end{cases} \]

$k_x = E_{k_x}$ \quad $k_y = E_{k_y}$

$p(x) = \sqrt{2m(E - k_x \alpha^2)}$

\[\int E_{k_x} \, dx \sqrt{2m(E - k_x \alpha^2)} = \left(\frac{n^2 \pi^2}{2} \right) \alpha^2 \]

\[\int_0^{2\pi} E_{k_x} \, dy \sqrt{2m(E - k_x \alpha^2)} = \left(\frac{n^2 \pi^2}{2} \right) \alpha^2 \]

\[E = \left(\frac{k^2}{2m} \right) \left(\frac{n^2 \pi^2}{2} \right) \alpha^2 \]

\[c = \int_0^1 d\gamma \left[(1 - \gamma)^2 \right] = \frac{3}{2} \]

\[E = \left(\frac{3k^2}{4m} \right) \left(\frac{n^2 \pi^2}{2} \right) \]
Example 2: \[V(x) = \lambda x^4 \]

\[E_n = \frac{N_n x}{m \lambda^2} \left[\frac{\mu + \nu}{\mu} \right]^{\nu / 2} \]

some integral

\[E_{n(\text{num})} \approx \frac{E_n}{(\text{numeral})} \]

\[E_{(''')} \approx \frac{E_n}{(''')} \]

continues to improve!

Barrier penetration

The story is slightly different:

Here we want to fix, whereas to \(R \) is completely okay.

Even if moving work on \(L \) is \(I \).
To work this out, we can use connection formula:

\[\frac{1}{\mu} \cos \left(\int_{x_0}^{x} p(x') \, dx' \right) \quad \Rightarrow \quad \frac{1}{\mu(x)} e^{-\int_{x_0}^{x} k(x') \, dx'} \]

\[\int_{\text{Im}(\mu(x) - E)} \]

Similarly we could look for contours

\[\mu \Rightarrow \int_{c} e^{\frac{1}{\mu} + \mu} \]

such that solution is given by exponentially \(\exp \frac{1}{\mu} \).

\[\frac{1}{\mu} \sin \left(\int_{x_0}^{x} p(x') \, dx' \right) \quad \Rightarrow \quad \frac{1}{\mu(x)} e^{\int_{x_0}^{x} k(x') \, dx'} \]

Similarly for

\[\frac{1}{\mu} e^{\int_{x_0}^{x} k(x) \, dx} \quad \Rightarrow \quad \frac{1}{\mu(x)} e^{\int_{x_0}^{x} k(x') \, dx'} \]

Linear combinations give us

\[\frac{1}{\mu(x)} e^{\int_{x_0}^{x} p(x') \, dx'} \quad \Rightarrow \quad A e^{-\int_{x_0}^{x} k(x') \, dx'} + B e^{\int_{x_0}^{x} k(x) \, dx} \]
\[T = \frac{\psi_{n_{1}}^{*} \psi_{n_{2}}}{|\psi_{n_{1}}^{*} \psi_{n_{2}}|} = \frac{1}{\hat{\rho}_{n_{1}} \hat{\rho}_{n_{2}}} \frac{E_{2}^{2}}{A_{1}^{2}} \]

\[= \frac{4}{(2\theta + \theta_{t})^{2}} \]

\[\Theta_{11} = \frac{1}{\theta^{2}} \cdot e^{-2\int_{0}^{b} k(x) dx} \]
Ex: alpha decay as He^4 nucleus makes large step

\[\nu = \frac{1}{m} \sqrt{2m(E_{\text{fin}})} \]

Killing energy:
\[\frac{2m\nu^2}{\hbar^2} - \frac{2m\nu^2}{\hbar^2} = \text{seemingly} \]

Tunneling rate:
\[R_0 = \frac{2m(E_{\text{fin}})}{2m\nu^2} e^{-2\varphi} \quad \text{with } \varphi = \int_{x_0}^{x_1} \frac{dx}{\sqrt{2m(E_{\text{fin}})}} \]

Proof of long path and \(x \), given particle \(x_0 \) and \(x_1 \).