Satellite operations and fractal structures on knot concordance

Arunima Ray
Brandeis University

Cochranfest

June 2, 2016
Satellite operations on knots

Figure: The satellite operation on knots
Any knot P in a solid torus gives a function on the set of knots.

\[
P : \mathcal{K} \rightarrow \mathcal{K}
\]

\[
K \mapsto P(K)
\]
Knot concordance

Definition

Knots K_0, K_1 are concordant if they cobound a smoothly embedded annulus in $S^3 \times [0, 1]$. Knots modulo concordance form the knot concordance group C.

A knot is slice if it is concordant to the unknot.
Topological knot concordance

Definition

Knots \(K_0, K_1 \) are \textit{topologically concordant} if they cobound a locally flat, topologically embedded annulus in \(S^3 \times [0, 1] \). Knots modulo topological concordance form the \textit{topological knot concordance group} \(C_{\text{top}} \).

A knot is \textit{topologically slice} if it is topologically concordant to the unknot.
Exotic knot concordance

Definition

Knots \(K_0, K_1 \) are *exotically concordant* if they cobound a smoothly embedded annulus in a smooth manifold \(M \) homeomorphic to \(S^3 \times [0, 1] \), i.e. a possibly exotic \(S^3 \times [0, 1] \). Knots modulo exotic concordance form the *exotic knot concordance group* \(C_{\text{ex}} \).

If the smooth 4–dimensional Poincaré Conjecture holds, then \(C = C_{\text{ex}} \).

A knot is *exotically slice* if it is exotically concordant to the unknot.
Satellite operators on knot concordance

Any knot in a solid torus gives a well-defined map on knot concordance classes, called a satellite operator. That is, we have the following commutative diagram.

\[
\begin{array}{ccc}
K & \xrightarrow{P} & K \\
\downarrow & & \downarrow \\
C_* & \xrightarrow{P} & C_ *
\end{array}
\]

for any \(* \in \{\emptyset, \text{top}, \text{ex}\} \).
How do satellite operators act on knot concordance?

Figure: The untwisted Whitehead double of a knot K
How do satellite operators act on knot concordance?

Figure: The untwisted Whitehead double of a knot K

Long-standing conjecture: $\text{Wh}(K)$ slice $\Rightarrow K$ slice.
How do satellite operators act on knot concordance?

Figure: The untwisted Whitehead double of a knot K

Long-standing conjecture: $\text{Wh}(K)$ slice $\Rightarrow K$ slice.
This can be restated as: what is the ‘kernel’ of $\text{Wh} : C \rightarrow C$?
Given a satellite operator \(P : C_* \to C_* \),

1. is \(P \) ‘weakly injective’? That is, if \(P(K) = 0 \), is \(K = 0 \)?
Given a satellite operator $P : C_* \to C_*$,

1. is P ‘weakly injective’? That is, if $P(K) = 0$, is $K = 0$?
2. is P injective? That is, if $P(K) = P(J)$, is $K = J$?
3. does P preserve linear independence? That is, if $\{K_i\}$ is linearly independent, is $\{P(K_i)\}$?
Given a satellite operator $P : \mathcal{C}_* \to \mathcal{C}_*$,

1. is P ‘weakly injective’? That is, if $P(K) = 0$, is $K = 0$?
2. is P injective? That is, if $P(K) = P(J)$, is $K = J$?
3. does P preserve linear independence? That is, if $\{K_i\}$ is linearly independent, is $\{P(K_i)\}$?

Note: Satellite operators are not generally homomorphisms.
Given a satellite operator $P : C_* \rightarrow C_*$,

1. is P ‘weakly injective’? That is, if $P(K) = 0$, is $K = 0$?
2. is P injective? That is, if $P(K) = P(J)$, is $K = J$?
3. does P preserve linear independence? That is, if $\{K_i\}$ is linearly independent, is $\{P(K_i)\}$?

Note: Satellite operators are not generally homomorphisms.

5. is P surjective?
Given a satellite operator $P : C_* \to C_*$,

1. is P ‘weakly injective’? That is, if $P(K) = 0$, is $K = 0$?
2. is P injective? That is, if $P(K) = P(J)$, is $K = J$?
3. does P preserve linear independence? That is, if $\{K_i\}$ is linearly independent, is $\{P(K_i)\}$?

Note: Satellite operators are not generally homomorphisms.

4. is P surjective?
5. what are the ‘dynamics’?
Given a satellite operator $P : \mathcal{C}_* \rightarrow \mathcal{C}_*$,

1. is P ‘weakly injective’? That is, if $P(K) = 0$, is $K = 0$?
2. is P injective? That is, if $P(K) = P(J)$, is $K = J$?
3. does P preserve linear independence? That is, if $\{K_i\}$ is linearly independent, is $\{P(K_i)\}$?

Note: Satellite operators are not generally homomorphisms.

5. is P surjective?
6. what are the ‘dynamics’?
7. any other question you might ask about functions.
Connected-sum is a satellite operation.

![Diagram](image)

Figure: The pattern for connected-sum with the knot K

Connected-sum is both injective and surjective on any C_\ast.
Previous results

Hedden (2007): if $\tau(K) > 0$, then $Wh^i(K)$ is not slice for any $i \geq 0$.

Cochran–Harvey–Leidy (2011): large classes of ‘robust doubling operators’ (winding number zero) injectively map large infinite subgroup of C to an independent set.

Hedden–Kirk (2012): the Whitehead doubling operator preserves the linear independence of an infinite independent set of torus knots. (later generalized by Juanita Pinzón-Caicedo)
Injectivity of satellite operators

Theorem (Cochran–Davis–R.)

Any ‘strong winding number ±1’ satellite operator is injective on C_{top} and C_{ex}.

Thus, modulo smooth 4DPC, any strong winding number ±1 satellite operator is injective on C.

Injectivity of satellite operators

Theorem (Cochran–Davis–R.)

Any ‘strong winding number ±1’ satellite operator is injective on \(C_{\text{top}} \) and \(C_{\text{ex}} \).

Thus, modulo smooth 4DPC, any strong winding number ±1 satellite operator is injective on \(C \).

Corollary: if \(\tau(K) \neq 0 \), then \(P^i(K) \) is not slice for any winding number ±1 satellite operator \(P \) with \(P(U) \) slice, for any \(i \geq 0 \).

(There are analogous results for other non-zero winding numbers \(w \), in terms of concordance in \(\mathbb{Z}[\frac{1}{w}] \)-homology \(S^3 \times [0, 1] \); in particular, any winding number ±1 satellite operator is injective on concordance classes in integral homology \(S^3 \times [0, 1] \). For brevity, we will not discuss this much more.)
Strong winding number ± 1

A pattern P is ‘strong winding number ± 1’ if the meridian of the solid torus normally generates $\pi_1(S^3 - P(U))$.

cf. P is winding number ± 1 if the meridian of the solid torus generates $H_1(S^3 - P(U))$.

Figure: The Mazur pattern
Strong winding number ± 1

Definition

A pattern P is ‘strong winding number ± 1’ if the meridian of the solid torus normally generates $\pi_1(S^3 - P(U))$.

cf. P is winding number ± 1 if the meridian of the solid torus generates $H_1(S^3 - P(U))$.

If $P(U)$ is unknotted, strong winding number ± 1 is the same as winding number ± 1.

Figure: The Mazur pattern
Proof of injectivity

First we prove weak injectivity for slice patterns.

Recall that a knot K is (topologically or exotically) slice if and only if the zero surgery M_K bounds a 4–manifold W where W is a homology circle and the meridian of K normally generates $\pi_1(W)$.
Proof of injectivity

First we prove weak injectivity for slice patterns.

Recall that a knot K is (topologically or exotically) slice if and only if the zero surgery M_K bounds a 4–manifold W where W is a homology circle and the meridian of K normally generates $\pi_1(W)$.

Lemma: If R is strong winding number ± 1 with $R(U)$ (topologically or exotically) slice then $M_{R(K)}$ is homology cobordant to M_K via a 4–manifold V where $\pi_1(V)$ is normally generated by the meridian of K.
Proof of injectivity

Now suppose that $R(K)$ is slice, $R(U)$ is slice, and R is strong winding number ± 1.

\[W \]

\[M_{R(K)} \]
Proof of injectivity

Now suppose that $R(K)$ is slice, $R(U)$ is slice, and R is strong winding number ± 1.
Proof of injectivity

Now suppose that $R(K)$ is slice, $R(U)$ is slice, and R is strong winding number ± 1.

\[W \quad V \]

\[M_{R(K)} \quad M_{K} \]
Proof of injectivity

Now suppose that $R(K)$ is slice, $R(U)$ is slice, and R is strong winding number ± 1.

By the previous lemma, K is slice, and thus slice strong winding number ± 1 satellite operators are weakly injective.
Proof of injectivity

Now, suppose $P(K) = P(J)$ (i.e. concordant in the relevant category), where P is strong winding number ± 1 (not necessarily slice).
Proof of injectivity

Now, suppose $P(K) = P(J)$ (i.e. concordant in the relevant category), where P is strong winding number ± 1 (not necessarily slice).

Since $K# - K$ is slice, $J = K# - K#J$, and thus,

$$P(J) = P(K# - K#J)$$
Proof of injectivity

Now, suppose $P(K) = P(J)$ (i.e. concordant in the relevant category), where P is strong winding number ± 1 (not necessarily slice).

Since $K\# - K$ is slice, $J = K\# - K\#J$, and thus,

$$P(J) = P(K\# - K\#J)$$

and so,

$$P(K) = P(K\# - K\#J)$$
Proof of injectivity

Now, suppose $P(K) = P(J)$ (i.e. concordant in the relevant category), where P is strong winding number ± 1 (not necessarily slice).

Since $K\# - K$ is slice, $J = K\# - K\#J$, and thus,

$$P(J) = P(K\# - K\#J)$$

and so,

$$P(K) = P(K\# - K\#J)$$

and then,

$$-P(K)\# [P(K\# - K\#J)] = 0$$
Proof of injectivity

We know that $-P(K)\# [P(K\#(-K\#J))]$ is slice. This knot is shown below.

\[\begin{tikzpicture}
 \node (P) at (0,0) {P};
 \node (P') at (3,0) {P};
 \node (K) at (1.5,-1.5) {K};
 \node (K') at (2.5,-1.5) {$-K\#J$};
 \draw (P) -- (K);
 \draw (P') -- (K');
 \draw (K) -- (K');
\end{tikzpicture}\]
Proof of injectivity

We know that $-P(K)\# [P(K\#(-K\#J))]$ is slice. This knot is shown below.

Note that this is a satellite with a ribbon pattern and companion $-K\#J$. The pattern is strong winding number one.
Proof of injectivity

We know that $-P(K) \# [P(K \# (-K \# J))]$ is slice. This knot is shown below.

Note that this is a satellite with a ribbon pattern and companion $-K \# J$. The pattern is strong winding number one.

Thus, by weak injectivity for satellite operators with slice patterns, $-K \# J$ is slice, and thus $K = J$.
Satellite operators form a monoid

Proposition

The satellite operation gives a monoid action on knots, i.e.

$$(P \ast Q)(K) = P(Q(K))$$
Patterns and homology cylinders

Given a pattern P in a solid torus ST, let $E(P)$ denote the complement $ST - P$.

$E(P)$ is a 3–manifold with two toral boundary components, specifically a homology cylinder.
Patterns and homology cylinders

Given a pattern P in a solid torus ST, let $E(P)$ denote the complement $ST - P$.

$E(P)$ is a 3–manifold with two toral boundary components, specifically a homology cylinder.

Homology cylinders, modulo homology cobordism, form a group under stacking (J. Levine).

Let \hat{S}_* be the group of the ‘strong’ homology cylinders under ‘strong’ homology cobordism.
Patterns and homology cylinders

Given a pattern P in a solid torus ST, let $E(P)$ denote the complement $ST - P$.

$E(P)$ is a 3–manifold with two toral boundary components, specifically a homology cylinder.

Homology cylinders, modulo homology cobordism, form a group under stacking (J. Levine).

Let \hat{S}_* be the group of the ‘strong’ homology cylinders under ‘strong’ homology cobordism.

There is a monoid homomorphism from the monoid of strong winding number ± 1 patterns to the group \hat{S}_*.

Arunima Ray (Brandeis)

Satellite operations and fractals

June 2, 2016 18 / 28
Homology cylinders act on knots in homology 3–spheres

Let \(V \) be a homology cylinder. Given a knot \(K \) in a homology 3–sphere \(Y \), carve out \(N(K) \), a solid torus neighborhood of \(K \).
Homology cylinders act on knots in homology 3–spheres

Let \(V \) be a homology cylinder. Given a knot \(K \) in a homology 3–sphere \(Y \), carve out \(N(K) \), a solid torus neighborhood of \(K \).

\[
Y - N(K) \quad \quad V
\]

\[
\partial N(K) \quad \partial_- V \quad \partial_+ V
\]
Homology cylinders act on knots in homology 3–spheres

Let V be a homology cylinder. Given a knot K in a homology 3–sphere Y, carve out $N(K)$, a solid torus neighborhood of K.

$$Y - N(K) \quad V$$

$$\partial N(K) = \partial_- V \quad \partial_+ V$$
Let V be a homology cylinder. Given a knot K in a homology 3–sphere Y, carve out $N(K)$, a solid torus neighborhood of K.

We obtain a 3–manifold with a single torus boundary component. We can canonically glue in a solid torus to get a homology 3–sphere. The core of this solid torus is the new knot.
Generalizations of knot concordance

Let \widehat{C}_* be the group of knots in homology spheres modulo concordance in ‘strong’ homology cobordisms.
Let \hat{C}_* be the group of knots in homology spheres modulo concordance in ‘strong’ homology cobordisms.

There are injective homomorphisms $C_* \hookrightarrow \hat{C}_*$.

(Davis–R.): \hat{S}_* acts on \hat{C}_* by a group action.
Theorem (Davis–R.)

For \(* = \text{ex or top}, \) and any strong winding number one satellite operator \(P, \) the following diagram commutes.

\[
\begin{array}{c}
\mathbb{C}_* \xrightarrow{P} \mathbb{C}_* \\
\downarrow \quad \downarrow \\
\hat{\mathbb{C}}_* \xrightarrow{E(P)} \hat{\mathbb{C}}_*
\end{array}
\]

Since \(\hat{S}_* \) gives a group action on \(\hat{\mathbb{C}}_* \), each \(E(P) \in \hat{S}_* \) acts via a bijection. The Cochran–Davis–R. injectivity result for strong winding number \(\pm 1 \) satellite operators follows.
Satellite operators as group actions

Thus, the classical satellite operation on C_\ast is a restriction of a group action on \hat{C}_\ast.
Satellite operators as group actions

Thus, the classical satellite operation on C_* is a restriction of a group action on \hat{C}_*.

Since $E(P)$ is an element of a group, it has an inverse $E(P)^{-1}$.
Satellite operators as group actions

Thus, the classical satellite operation on C_\ast is a restriction of a group action on \hat{C}_\ast.

Since $E(P)$ is an element of a group, it has an inverse $E(P)^{-1}$.

P is surjective on C_\ast if and only if $E(P)^{-1}(C_\ast) \subseteq C_\ast$.
Satellite operators as group actions

Thus, the classical satellite operation on \mathcal{C}_* is a restriction of a group action on $\hat{\mathcal{C}}_*$.

Since $E(P)$ is an element of a group, it has an inverse $E(P)^{-1}$.

P is surjective on \mathcal{C}_* if and only if $E(P)^{-1}(\mathcal{C}_*) \subseteq C_*$.

Theorem (Davis–R.)

Let $P \subseteq ST = S^1 \times D^2$ be winding number one. If the meridian of P is in the normal subgroup of $\pi_1(E(P))$ generated by the meridian of ST, then P is strong winding number one and there exists a strong winding number one pattern \overline{P} such that $E(\overline{P}) = E(P)^{-1}$ as homology cylinders.

In particular, $\overline{P}(P(K))$ is (exotically or topologically) concordant to K for any knot K.
Satellite operators as group actions

Thus, the classical satellite operation on C_* is a restriction of a group action on \hat{C}_*.

Since $E(P)$ is an element of a group, it has an inverse $E(P)^{-1}$.

P is surjective on C_* if and only if $E(P)^{-1}(C_*) \subseteq C_*$.

Theorem (Davis–R.)

Let $P \subseteq ST = S^1 \times D^2$ be winding number one. If the meridian of P is in the normal subgroup of $\pi_1(E(P))$ generated by the meridian of ST, then P is strong winding number one and there exists a strong winding number one pattern \overline{P} such that $E(\overline{P}) = E(P)^{-1}$ as homology cylinders.

In particular, $\overline{P}(P(K))$ is (exotically or topologically) concordant to K for any knot K.

Consequently, $P : C_* \rightarrow C_*$ is a bijection.
For each \(m \geq 0 \), the satellite operator \(P_m \) shown below has an inverse satellite operator \(\overline{P_m} \) which can be explicitly drawn, i.e. \(\overline{P_m}(P_m(K)) \) is concordant to \(K \) for any knot \(K \). Moreover, each \(P_m : \mathcal{C}_* \rightarrow \mathcal{C}_* \) is bijective and \(P_m \) is distinct from all connected-sum operators in \(\hat{S}_* \).

Note that it is still possible that, for some fixed knot \(J \), \(P_m(K) = J \# K \) for all \(K \), i.e. it is not known whether patterns act faithfully.
In contrast, recall from yesterday that the Mazur satellite operator is non-surjective on \(\mathcal{C} \) (A. Levine).

In particular, Levine showed that no knot \(J \) with \(\varepsilon(J) = -1 \) is in the image of the Mazur satellite operator.

Note that it is not known whether the Mazur satellite operator is the identity function on \(C_{\text{top}} \).

Figure: The Mazur pattern
K. Park: $Wh(T_{2,2m+1})$ and $Wh^2(T_{2,2m+1})$ generate a $\mathbb{Z} \oplus \mathbb{Z}$ summand of the subgroup of topologically slice knots in C.

R. : For several classes of strong winding number ± 1 patterns P (including the Mazur pattern) and infinitely many knots K, $P^i(K) \neq P^j(K)$ in C_{ex} for any $i \neq j \geq 0$.
(For the Mazur pattern, this can be improved by A. Levine’s computation of τ–invariants.)

Feller–J. Park–R. : Let M be the Mazur satellite operator. There exists an infinite family of topologically slice knots $\{K_i\}$ such that for all $r \geq 0$, $\{M^r(K_i)\}$ generates a subgroup of C of infinite rank.
Fractals are objects that exhibit ‘self-similarity’ at arbitrarily small scales.
Fractals are objects that exhibit ‘self-similarity’ at arbitrarily small scales.

i.e. there exist families of injective functions from the set to smaller and smaller subsets (in particular, the functions are non-surjective).
Fractals are objects that exhibit ‘self-similarity’ at arbitrarily small scales.

i.e. there exist families of injective functions from the set to smaller and smaller subsets (in particular, the functions are non-surjective).

Conjecture (Cochran–Harvey–Leidy, 2011)

The knot concordance group C is a fractal.
The knot concordance group has fractal properties

Figure: The Mazur pattern M

Cochran–Davis–R. : M is injective on C_{ex} and C_{top}.

A. Levine: M is not surjective on C. Moreover,

$$Im(M) \supsetneq Im(M^2) \supsetneq Im(M^3) \supsetneq \cdots$$

What about scale?
The knot concordance group has fractal properties

To properly address the question of scale we need some notion of distance on C_*. This was started by Cochran–Harvey, with further work by Cochran–Harvey–Powell (see talk on Saturday).