Satellite operations on knots, and fractals

Arunima Ray
Rice University

STEM Colloquium, University of Wisconsin–Eau Claire

March 7, 2014
Take a piece of string, tie a knot in it, glue the two ends together.
Take a piece of string, tie a knot in it, glue the two ends together. A knot is a closed curve in space which does not intersect itself anywhere.
Two knots are **equivalent** if we can get from one to the other by a continuous deformation, i.e. without having to cut the piece of string.

Figure: All of these pictures are of the same knot, the *unknot* or the *trivial knot*.
‘Adding’ two knots

![Knot Diagrams](image)

Figure: The connected sum operation on knots

The (class of the) unknot is the identity element, i.e. $K \# \text{Unknot} = K$
‘Adding’ two knots

![Image of knots](image)

Figure: The connected sum operation on knots

The (class of the) unknot is the identity element, i.e. $K \# \text{Unknot} = K$

However, there are no inverses for this operation. In particular, if neither K nor J is the unknot, then $K \# J$ cannot be the unknot either.

(In fact, we can show that $K \# J$ is more complex than K and J in a precise way.)
A 4–dimensional notion of a knot being ‘trivial’

A knot K is equivalent to the unknot if and only if it is the boundary of a disk.
A 4–dimensional notion of a knot being ‘trivial’

A knot K is equivalent to the unknot if and only if it is the boundary of a disk.
A 4–dimensional notion of a knot being ‘trivial’

A knot K is equivalent to the unknot if and only if it is the boundary of a disk.

We want to extend this notion to four dimensions.
A 4–dimensional notion of a knot being ‘trivial’

Figure: Schematic picture of the unknot
A 4–dimensional notion of a knot being ‘trivial’

Definition

A knot K is called **slice** if it bounds a disk in four dimensions as above.

Figure : Schematic pictures of the unknot and a slice knot
Definition

Two knots K and J are said to be **concordant** if they cobound a smooth annulus in $\mathbb{R}^3 \times [0, 1]$.
Definition

Two knots K and J are said to be **concordant** if they cobound a smooth annulus in $\mathbb{R}^3 \times [0, 1]$.

\[\mathbb{R}^3 \times [0, 1] \]
The set of knot concordance classes under the connected sum operation forms a group!
The set of knot concordance classes under the connected sum operation forms a group!

A group is a very friendly algebraic object with a well-studied structure. For example, the set of integers is a group.
The knot concordance group

The set of knot concordance classes under the connected sum operation forms a group!

A group is a very friendly algebraic object with a well-studied structure. For example, the set of integers is a group.

This means that for every knot K there is some $-K$, such that $K \# -K$ is a slice knot.

We call the group of knot concordance classes the knot concordance group and denote it by C.
Goal

Goal: study the knot concordance group C by studying functions on it.

In particular, this will show that C has the structure of a fractal.
Fractals are objects that exhibit ‘self-similarity’ at arbitrarily small scales.

i.e. there exist families of ‘injective’ functions from the set to smaller and smaller subsets.
The satellite operation is a generalization of the connected sum operation. Here P is called a satellite operator, and $P(K)$ is called a satellite knot.
Any knot P in a solid torus gives a function on the set of all knots

$$P : \mathcal{K} \to \mathcal{K}$$

$$K \to P(K)$$

These functions descend to give well-defined functions on the knot concordance group.

$$P : \mathcal{C} \to \mathcal{C}$$

$$K \to P(K)$$
The knot concordance group has fractal properties

Recall that a fractal is a set which admits self-similarities at arbitrarily small scales, i.e. there exist infinitely many injective functions from the set to smaller and smaller subsets.

Theorem (Cochran–Davis–R., 2012)

For large (infinite) classes of satellite operators P, $P : C \rightarrow C$ is injective (modulo the smooth 4–dimensional Poincaré Conjecture).

Theorem (R., 2013)

There exist infinitely many satellite operators P and a large class of knots K such that $P^i(K) \neq P^j(K)$ for all $i \neq j$.
Knots are closed curves in three-dimensional space which do not intersect themselves.
1. Knots are closed curves in three-dimensional space which do not intersect themselves.

2. There is a four-dimensional equivalence relation on knots, called ‘concordance’, which gives the set of knots a group structure.
1. Knots are closed curves in three-dimensional space which do not intersect themselves.

2. There is a four-dimensional equivalence relation on knots, called ‘concordance’, which gives the set of knots a group structure.

3. By studying the action of ‘satellite operators’ on knots, we can see that the knot concordance group has fractal properties.