There exist infinitely many unknotted winding number one satellite operators on knot concordance

Arunima Ray
Rice University

2013 Lehigh University Geometry and Topology Conference

May 25, 2013
Preliminaries

Definition

A knot is a smooth embedding $S^1 \hookrightarrow S^3$ considered up to isotopy.
Definition

A knot is a smooth embedding $S^1 \rightarrow S^3$ considered up to isotopy.
A 4–dimensional equivalence relation on knots

Two knots K and J are said to be concordant if they cobound a properly embedded smooth annulus in $S^3 \times [0, 1]$.

$S^3 \times [0, 1]$
A 4–dimensional equivalence relation on knots

Definition

Two knots K and J are said to be **concordant** if they cobound a properly embedded smooth annulus in $S^3 \times [0, 1]$.
The knot concordance group

Definition

Let $C = \frac{\text{Knots}}{\text{concordance}}$

C is a group under the connected-sum operation and is called the knot concordance group.
The knot concordance group

Definition

Let $C = \frac{\text{Knots}}{\text{concordance}}$

C is a group under the connected-sum operation and is called the knot concordance group.

The identity element in C is the class of the unknot. That is, the class of knots which bound smoothly embedded disks in B^4, called slice knots.
Variants of the knot concordance group

Definition

Two knots are **concordant** if they cobound a **smoothly embedded** annulus in a manifold **diffeomorphic** to $S^3 \times [0, 1]$. Concordance classes of knots form the **knot concordance group**, denoted C.
Variants of the knot concordance group

Definition

Two knots are **concordant** if they cobound a **smoothly embedded** annulus in a manifold **diffeomorphic** to $S^3 \times [0,1]$. Concordance classes of knots form the **knot concordance group**, denoted C.

Definition

Two knots are **topologically concordant** if they cobound a **topologically embedded** annulus in a manifold **homeomorphic** to $S^3 \times [0,1]$. Topological concordance classes of knots form the **topological knot concordance group**, denoted C^{top}.
Variants of the knot concordance group

Definition

Two knots are **concordant** if they cobound a **smoothly embedded** annulus in a manifold **diffeomorphic** to $S^3 \times [0,1]$. Concordance classes of knots form the **knot concordance group**, denoted C.

Definition

Two knots are **topologically concordant** if they cobound a **topologically embedded** annulus in a manifold **homeomorphic** to $S^3 \times [0,1]$. Topological concordance classes of knots form the **topological knot concordance group**, denoted C^{top}.

Definition

Two knots are **exotically concordant** if they cobound a **smoothly embedded** annulus in a smooth manifold **homeomorphic** to $S^3 \times [0,1]$. Exotic concordance classes of knots form the **topological knot concordance group**, denoted C^{ex}.

If the 4–dimensional (smooth) Poincaré Conjecture is true, $C = C^{\text{ex}}$.
Variants of the knot concordance group

Definition

Two knots are **concordant** if they cobound a **smoothly embedded** annulus in a manifold **diffeomorphic** to $S^3 \times [0, 1]$. Concordance classes of knots form the **knot concordance group**, denoted C.

Definition

Two knots are **topologically concordant** if they cobound a **topologically embedded** annulus in a manifold **homeomorphic** to $S^3 \times [0, 1]$. Topological concordance classes of knots form the **topological knot concordance group**, denoted C^{top}.

Definition

Two knots are **exotically concordant** if they cobound a **smoothly embedded** annulus in a smooth manifold **homeomorphic** to $S^3 \times [0, 1]$. Exotic concordance classes of knots form the **topological knot concordance group**, denoted C^{ex}.

If the 4–dimensional (smooth) Poincaré Conjecture is true, $C = C^{\text{ex}}$.
Definition

A satellite operator, or pattern, is a knot inside a solid torus, considered up to isotopy within the solid torus.
Definition

A **satellite operator**, or **pattern**, is a knot inside a solid torus, considered up to isotopy within the solid torus.

Definition

The **winding number** of a pattern is the signed count of its intersections with a meridional disk of the solid torus.
The satellite construction

P, the pattern

K, a knot in S^3

Figure: The satellite operation on knots in S^3.
The satellite construction

\(P \), the pattern \(K \), a knot in \(S^3 \) \(P(K) \), the satellite knot

Figure: The satellite operation on knots in \(S^3 \).
The satellite construction

P, the pattern

K, a knot in S^3

$P(K)$, the satellite knot

Figure: The satellite operation on knots in S^3.

Remark

Any satellite operator P gives a function $P : C \to C$.
Strong winding number one operators

Consider P in S^3 instead of the solid torus. Call this \tilde{P}.

Definition

If η, the meridian of the solid torus, normally generates $\pi_1(S^3 \setminus \tilde{P})$, then P is said to have strong winding number one.

For a P such that \tilde{P} is unknotted, P is strong winding number one if and only if it is winding number one.
Strong winding number one operators

Consider P in S^3 instead of the solid torus. Call this \tilde{P}. Definition: If η, the meridian of the solid torus, normally generates $\pi_1(S^3 \setminus \tilde{P})$, then P is said to have strong winding number one. For a P such that \tilde{P} is unknotted, P is strong winding number one if and only if it is winding number one.
Consider P in S^3 instead of the solid torus. Call this \tilde{P}.
Consider P in S^3 instead of the solid torus. Call this \tilde{P}.

Definition

If η, the meridian of the solid torus, normally generates $\pi_1(S^3\setminus \tilde{P})$, then P is said to have strong winding number one.
Consider P in S^3 instead of the solid torus. Call this \tilde{P}.

Definition

If η, the meridian of the solid torus, normally generates $\pi_1(S^3 \setminus \tilde{P})$, then P is said to have strong winding number one.

For a P such that \tilde{P} is unknotted, P is strong winding number one if and only if it is winding number one.
Injectivity of satellite operators

Theorem (Cochran–Davis–R., ’12)

If P is a strong winding number one pattern, then

$$P : C^{\text{top}} \to C^{\text{top}} \text{ and } P : C^{\text{ex}} \to C^{\text{ex}}$$

are injective. That is, for any two knots K and J,

$$P(K) = P(J) \iff K = J$$
Theorem (Cochran–Davis–R., ’12)

If P is a strong winding number one pattern, then

$$P : C^{\text{top}} \to C^{\text{top}} \text{ and } P : C^{\text{ex}} \to C^{\text{ex}}$$

are injective. That is, for any two knots K and J,

$$P(K) = P(J) \iff K = J$$

If the 4–dimensional Poincaré Conjecture is true, $P : C \to C$ is injective.
Is C a fractal?

A fractal can be defined as a set which ‘exhibits self-similarity on many scales’.
Is C a fractal?

A fractal can be defined as a set which ‘exhibits self-similarity on many scales’.
Each strong winding number one satellite operator gives a ‘self-similarity’ of C^{top} and C^{ex} (and maybe even of C).
Is C a fractal?

A fractal can be defined as a set which ‘exhibits self-similarity on many scales’.
Each strong winding number one satellite operator gives a ‘self-similarity’ of C^{top} and C^{ex} (and maybe even of C).

Question

How many strong winding number one operators are there?
Theorem (R.)

There is a strong winding number one satellite operator P and a large family of knots K such that $P^i(K) = P(P(\cdots(P(K))\cdots))$ are all distinct in C^{ex} and C. That is, $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Therefore, each P^i gives a distinct function on the smooth knot concordance group.
Main theorem

Theorem (R.)

There is a strong winding number one satellite operator P and a large family of knots K such that $P^i(K) = P(P(\cdots(P(K))\cdots))$ are all distinct in Cex and C. That is, $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Therefore, each P^i gives a distinct function on the smooth knot concordance group. Each P^i is strong winding number one. So we have infinitely many self-similarities of Cex.
Main theorem

Theorem (R.)

There is a strong winding number one satellite operator P and a large family of knots K such that $P^i(K) = P(P(\cdots (P(K)) \cdots))$ are all distinct in C^{ex} and C. That is, $P^i(K) \neq P^j(K)$ for all $i \neq j$.

Therefore, each P^i gives a distinct function on the smooth knot concordance group.
Each P^i is strong winding number one. So we have infinitely many self-similarities of C^{ex}.
We can choose K to be topologically slice and \widetilde{P} to be unknotted, in which case the set $\{P^i(K)\}$ is an infinite family of topologically slice knots that are distinct in smooth concordance.
Ozsváth–Szabó defined the τ–invariant of a knot. This gives homomorphisms $\tau : C \to \mathbb{Z}$ and $\tau : C^{\text{ex}} \to \mathbb{Z}$.
The satellite construction

Main theorem

Tools

Proofs

\(\tau\)-invariant of knots

Definition

Ozsváth–Szabó defined the \(\tau\)-invariant of a knot. This gives homomorphisms \(\tau: \mathcal{C} \to \mathbb{Z}\) and \(\tau: \mathcal{C}^{\text{ex}} \to \mathbb{Z}\).

Proposition (Ozsváth–Szabó)

Start with a knot \(K_+\). If \(K_-\) is the knot obtained by changing a single positive crossing of \(K_+\), then

\[\tau(K_+) - 1 \leq \tau(K_-) \leq \tau(K_+)\]
Composition of patterns

\[P(Q(K)) = (P \ast Q)(K) \]

Figure: The monoid operation on patterns.
Legendrian front diagrams

Every knot has a Legendrian front diagram, i.e. a diagram with no vertical tangencies wherein all crossings are of the following type:

\[\times \]
Legendrian front diagrams

Every knot has a Legendrian front diagram, i.e. a diagram with no vertical tangencies wherein all crossings are of the following type:
Classical invariants of Legendrian knots

$$\text{tb}(K) = (\# \text{positive crossings} - \# \text{negative crossings}) - \frac{1}{2} \# \text{cusps}$$

$$\text{rot}(K) = \frac{1}{2} (\# \text{down cusps} - \# \text{up cusps})$$
Classical invariants of Legendrian knots

\[\text{tb}(K) = (\# \text{positive crossings} - \# \text{negative crossings}) - \frac{1}{2} \# \text{cusps} \]
\[\text{rot}(K) = \frac{1}{2}(\# \text{down cusps} - \# \text{up cusps}) \]

\[\text{tb}(K) = (3 - 0) - \frac{1}{2}(4) = 1, \quad \text{rot}(K) = \frac{1}{2}(2 - 2) = 0 \]
Classical invariants for Legendrian patterns

\[\text{tb}(P) = 2 \quad \text{and} \quad \text{rot}(P) = 0 \]
For a knot K, suppose we have a Legendrian diagram with $tb(K) = 0$.
For a knot K, suppose we have a Legendrian diagram with $tb(K) = 0$. We can obtain the satellite knot $P(K)$ by taking parallels of K.

The Legendrian satellite operation
The Legendrian satellite operation

For a knot K, suppose we have a Legendrian diagram with $tb(K) = 0$. We can obtain the satellite knot $P(K)$ by taking parallels of K and then inserting the pattern.
Legendrian patterns and Legendrian satellites

Proposition (Ng)

\[\text{tb}(P(K)) = \text{tb}(P) + w(P)^2 \text{tb}(K) \]

\[\text{rot}(P(K)) = \text{rot}(P) + w(P) \text{rot}(K) \]
Legendrian patterns and Legendrian satellites

Proposition (Ng)

\[\text{tb}(P(K)) = \text{tb}(P) + w(P)^2 \text{tb}(K) \]

\[\text{rot}(P(K)) = \text{rot}(P) + w(P)\text{rot}(K) \]

Proposition

\[\text{tb}(P \ast Q) = \text{tb}(P) + w(P)^2 \text{tb}(Q) \]

\[\text{rot}(P \ast Q) = \text{rot}(P) + w(P)\text{rot}(Q) \]
The slice–Bennequin inequality

Slice–Bennequin inequality (Rudolph)

For any knot K, we have that

$$tb(K) + |rot(K)| \leq 2\tau(K) - 1$$
The proposition states that for any knot K with $tb(K) = 0$, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in C (and therefore, in C^{ex}).

Note: There are large families of such knots K.

Proposition (Cochran–Franklin–Hedden–Horn)

For any knot K with $tb(K) = 0$, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in C (and therefore, in C^{ex}).
Proposition (Cochran–Franklin–Hedden–Horn)

For any knot K with $tb(K) = 0$, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in C (and therefore, in C^{ex}).

Note: There are large families of such knots K.

Proof:

$tb(P(K)) = tb(P) + tb(K) = 0$ and
$rot(P(K)) = rot(P) + rot(K) = 2 + (2\tau(K) - 1) = 2\tau(K) + 1$.

$tb(P) = 0$ and $rot(P) = 2$
Proposition (Cochran–Franklin–Hedden–Horn)

For any knot K with $tb(K) = 0$, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in \mathcal{C} (and therefore, in \mathcal{C}^{ex}).

Note: There are large families of such knots K.

Proof: $tb(P(K)) = tb(P) + tb(K) = 0$ and $rot(P(K)) = rot(P) + rot(K) = 2 + (2\tau(K) - 1) = 2\tau(K) + 1$.

But $tb(P(K)) + |rot(P(K))| \leq 2\tau(P(K)) - 1$.
Proof

\[\text{tb}(P) = 0 \text{ and } \text{rot}(P) = 2 \]

Proposition (Cochran–Franklin–Hedden–Horn)

For any knot \(K \) with \(\text{tb}(K) = 0 \), \(\text{rot}(K) = 2\tau(K) - 1 \) and \(\tau(K) > 0 \), \(P(K) \neq K \) in \(C \) (and therefore, in \(C^{ex} \)).

Note: There are large families of such knots \(K \).

Proof: \(\text{tb}(P(K)) = \text{tb}(P) + \text{tb}(K) = 0 \) and \(\text{rot}(P(K)) = \text{rot}(P) + \text{rot}(K) = 2 + (2\tau(K) - 1) = 2\tau(K) + 1 \)
But \(\text{tb}(P(K)) + |\text{rot}(P(K))| \leq 2\tau(P(K)) - 1 \)
So \(0 + 2\tau(K) + 1 \leq 2\tau(P(K)) - 1 \)
Proposition (Cochran–Franklin–Hedden–Horn)

For any knot K with $tb(K) = 0$, $rot(K) = 2\tau(K) - 1$ and $\tau(K) > 0$, $P(K) \neq K$ in C (and therefore, in C^{ex}).

Note: There are large families of such knots K.

Proof:

\[
tb(P(K)) = tb(P) + tb(K) = 0 \quad \text{and} \quad rot(P(K)) = rot(P) + rot(K) = 2 + (2\tau(K) - 1) = 2\tau(K) + 1
\]

But $tb(P(K)) + |rot(P(K))| \leq 2\tau(P(K)) - 1$

So $0 + 2\tau(K) + 1 \leq 2\tau(P(K)) - 1 \Rightarrow \tau(K) + 1 \leq \tau(P(K))$
The satellite construction

Main theorem

Tools

Proofs

Proof

\[
\text{tb}(P) = 0 \text{ and } \text{rot}(P) = 2
\]

Proposition (Cochran–Franklin–Hedden–Horn)

For any knot \(K \) with \(\text{tb}(K) = 0 \), \(\text{rot}(K) = 2\tau(K) - 1 \) and \(\tau(K) > 0 \), \(P(K) \neq K \) in \(\mathcal{C} \) (and therefore, in \(\mathcal{C}^{\text{ex}} \)).

Note: There are large families of such knots \(K \).

Proof:

\[
\text{tb}(P(K)) = \text{tb}(P) + \text{tb}(K) = 0 \quad \text{and} \\
\text{rot}(P(K)) = \text{rot}(P) + \text{rot}(K) = 2 + (2\tau(K) - 1) = 2\tau(K) + 1
\]

But \(\text{tb}(P(K)) + |\text{rot}(P(K))| \leq 2\tau(P(K)) - 1 \)

So \(0 + 2\tau(K) + 1 \leq 2\tau(P(K)) - 1 \Rightarrow \tau(K) + 1 \leq \tau(P(K)) \)

\(\Rightarrow P(K) \neq K \)
Proof

Proposition (R.)

\[P^i(K) \neq K \text{ for any } i > 0 \text{ in } C \text{ (and therefore, in } C^{ex}). \]
Proposition (R.)

\(P^i(K) \neq K \) for any \(i > 0 \) in \(C \) (and therefore, in \(C^{\text{ex}} \)).

Proof:
Proposition (R.)

\[P^i(K) \neq K \text{ for any } i > 0 \text{ in } C \text{ (and therefore, in } C^{ex}). \]

Proof:

[Diagram of connected lines]
Proposition (R.)

\[P^i(K) \neq K \text{ for any } i > 0 \text{ in } C \text{ (and therefore, in } C^{\text{ex}}). \]

Proof:

Figure: The operator \(P^2 \)
Proposition (R.)

\[P^i(K) \neq K \text{ for any } i > 0 \text{ in } \mathcal{C} \text{ (and therefore, in } \mathcal{C}^{\text{ex}}). \]

Proof:

\[
\begin{align*}
\text{tb}(P^2) &= \text{tb}(P) + \text{tb}(P) \\
\text{rot}(P^2) &= \text{rot}(P) + \text{rot}(P)
\end{align*}
\]

Figure: The operator \(P^2 \)
Proof

\[\text{tb}(P^i) = 0 \text{ and } \text{rot}(P^i) = 2i \]
Proof

\[\text{tb}(P^i) = 0 \quad \text{and} \quad \text{rot}(P^i) = 2i \]
\[\text{tb}(P^i(K)) = 0 \quad \text{and} \quad \text{rot}(P^i(K)) = 2\tau(K) - 1 + 2i \]
Proof

\begin{align*}
\text{tb}(P^i) &= 0 \text{ and } \text{rot}(P^i) = 2i \\
\text{tb}(P^i(K)) &= 0 \text{ and } \text{rot}(P^i(K)) = 2\tau(K) - 1 + 2i
\end{align*}

By the slice–Bennequin inequality, we have that
Proof

\[\text{tb}(P^i) = 0 \text{ and } \text{rot}(P^i) = 2i \]
\[\text{tb}(P^i(K)) = 0 \text{ and } \text{rot}(P^i(K)) = 2\tau(K) - 1 + 2i \]

By the slice–Bennequin inequality, we have that

\[\text{tb}(P^i(K)) + |\text{rot}(P^i(K))| \leq 2\tau(P^i(K)) - 1 \]
Proof

\[\text{tb}(P^i) = 0 \text{ and } \text{rot}(P^i) = 2i \]
\[\text{tb}(P^i(K)) = 0 \text{ and } \text{rot}(P^i(K)) = 2\tau(K) - 1 + 2i \]

By the slice–Bennequin inequality, we have that

\[\text{tb}(P^i(K)) + |\text{rot}(P^i(K))| \leq 2\tau(P^i(K)) - 1 \]
\[0 + |2\tau(K) - 1 + 2i| \leq 2\tau(P^i(K)) - 1 \]
Proof

\[
\begin{align*}
\text{tb}(P^i) &= 0 \text{ and } \text{rot}(P^i) = 2i \\
\text{tb}(P^i(K)) &= 0 \text{ and } \text{rot}(P^i(K)) = 2\tau(K) - 1 + 2i
\end{align*}
\]

By the slice–Bennequin inequality, we have that

\[
\text{tb}(P^i(K)) + |\text{rot}(P^i(K))| \leq 2\tau(P^i(K)) - 1 \\
0 + |2\tau(K) - 1 + 2i| \leq 2\tau(P^i(K)) - 1
\]

Therefore, \(\tau(K) + i \leq \tau(P^i(K))\) and \(P^i(K) \neq K\) for \(i > 0\). \(\square\)
Introduction

The satellite construction

Main theorem

Tools

Proof

Theorem (R.)

\(P^i(K) \neq P^j(K) \) for any \(i \neq j \) in \(C \) (and therefore, in \(C^{ex} \)).

Additionally, \(\tau(P^i(K)) = \tau(K) + i \) for all \(i \geq 0 \).
Proof (R.)

$P^i(K) \neq P^j(K)$ for any $i \neq j$ in \mathcal{C} (and therefore, in \mathcal{C}^{ex}).
Additionally, $\tau(P^i(K)) = \tau(K) + i$ for all $i \geq 0$

Proof: We can change $P^i(K)$ to $P^{i-1}(K)$ by changing a single positive crossing to a negative crossing. Therefore, we know that

$$\tau(P^{i-1}(K)) \leq \tau(P^i(K)) \leq \tau(P^{i-1}(K)) + 1$$
Proof: We can change $P^i(K)$ to $P^{i-1}(K)$ by changing a single positive crossing to a negative crossing. Therefore, we know that

$$\tau(P^{i-1}(K)) \leq \tau(P^i(K)) \leq \tau(P^{i-1}(K)) + 1$$

Therefore,

$$\tau(P^i(K)) \leq \tau(P^{i-1}(K)) + 1 \leq \tau(P^{i-2}(K)) + 2 \leq \cdots \leq \tau(K) + i.$$

$$\Rightarrow \tau(P^i(K)) = \tau(K) + i \text{ for all } i > 0$$