A short proof of Rayleigh’s Theorem

Olivier Bernardi (MIT)
Spitzer’s walks in the plane

Walks made of n unit steps.
Direction of each step is uniformly random.
Spitzer’s walks in the plane

Walks made of \(n \) unit steps.
Direction of each step is uniformly random.

Theorem [Rayleigh] The probability for the walk to end at distance less than 1 from the origin is \(\frac{1}{n+1} \).
Spitzer’s walks in the plane

Walks made of n steps of random lengths distributed as X. Direction of each step is uniformly random.

Theorem [Rayleigh] The probability for the walk to end at distance less than 1 from the origin is $\frac{1}{n+1}$.

Theorem [B.] For any positive random variable X,

$$\mathbb{P}(X^i > X^j) = \frac{i}{i+j}.$$
Lemma. For any positive random variables A, B, C,

$$\mathbb{P}(A > B \ast C) + \mathbb{P}(B > A \ast C) + \mathbb{P}(C > A \ast B) = 1$$
Lemma. For any positive random variables \(A, B, C \),
\[
\mathbb{P}(A > B \ast C) + \mathbb{P}(B > A \ast C) + \mathbb{P}(C > A \ast B) = 1
\]

Proof. We condition on \(A = a, B = b, C = c \) and prove:
\[
\mathbb{P}(a > b \ast c) + \mathbb{P}(b > a \ast c) + \mathbb{P}(c > a \ast b) = 1.
\]

- If \(a \geq b + c \) or \(b \geq a + c \) or \(c \geq a + b \), obvious.

- Otherwise, consider the angles \(\alpha, \beta, \gamma \) of the triangle.
 One has \(\mathbb{P}(a > b \ast c) = \frac{2\alpha}{2\pi} \) etc.

Hence
\[
\mathbb{P}(a > b \ast c) + \mathbb{P}(b > a \ast c) + \mathbb{P}(c > a \ast b) = \frac{\alpha + \beta + \gamma}{\pi} = 1.
\]
Proof.

Lemma. For any positive random variables A, B, C,

$$\mathbb{P}(A > B \ast C) + \mathbb{P}(B > A \ast C) + \mathbb{P}(C > A \ast B) = 1$$

Equivalently, $\mathbb{P}(A > B \ast C) + \mathbb{P}(B > A \ast C) = \mathbb{P}(A \ast B > C)$.

Let $P(i, n) = \mathbb{P}(X^i > X^{n-i})$. We want to prove $P(i, n) = \frac{i}{n}$.
Lemma. For any positive random variables A, B, C,
\[\mathbb{P}(A > B \ast C) + \mathbb{P}(B > A \ast C) + \mathbb{P}(C > A \ast B) = 1 \]
Equivalently, \[\mathbb{P}(A > B \ast C) + \mathbb{P}(B > A \ast C) = \mathbb{P}(A \ast B > C) \].

Let $P(i, n) = \mathbb{P}(X^i > X^{(n-i)})$. We want to prove $P(i, n) = \frac{i}{n}$.

Apply the lemma to $A = X^i, B = X^j, C = X^{(n-i-j)}$. This gives $P(i, n) + P(j, n) = P(i + j, n)$ whenever $i + j \leq n$.

Thus $nP(1, n) = P(n, n) = 1$.
This gives $P(1, n) = \frac{1}{n}$, and $P(i, n) = i P(1, n) = \frac{i}{n}$. □
The end.