A bijective approach to percolation on random lattices, and maybe more

Olivier Bernardi - Brandeis University
Joint work with Nina Holden & Xin Sun - MIT
Model and motivations
Percolation

Site percolation: vertices colored *black* with proba p
white with proba $1 - p$

Site percolation on triangular lattice
Percolation

Site percolation: vertices colored *black* with proba p
white with proba $1 - p$
Percolation

Site percolation: vertices colored *black* with proba p

white with proba $1 - p$

Questions:
- **Critical probability?**
- **Crossing probabilities?**
Site percolation: vertices colored black with proba p white with proba $1 - p$

Questions:
- Critical probability?
- Crossing probabilities?
- Law of interfaces?
Percolation

Site percolation: vertices colored *black* with proba p *white* with proba $1 - p$

Questions:
- Critical probability?
- Crossing probabilities?
- Law of interfaces?
- Mixing properties?
Planar maps

Def. A **planar map** is a way of forming the sphere by gluing polygons.
Planar maps

Def. A **planar map** is a way of forming the sphere by gluing polygons.

Embedded connected planar graph considered up to homeomorphism.
Planar maps

Def. A **planar map** is a way of forming the sphere by gluing polygons.

Def. A **triangulation** is a planar map made of triangles.
Planar maps

Def. A **planar map** is a way of forming the sphere by gluing polygons.

Def. A **triangulation** is a planar map made of triangles.

Def. A map is **rooted** if an edge is marked and oriented.
Percolation on random lattices

We can consider percolation on **random planar triangulations** (instead of regular triangular lattice)
Percolation on random lattices

We can consider percolation on random planar triangulations (instead of regular triangular lattice)

Same questions:
- Critical probability?
- Crossing probabilities?
- Law of interfaces?
- Mixing properties?

[Curien, Kortchemski 17, Bernardi, Curien, Miermont 18].
Percolation on random lattices

We can consider percolation on random planar triangulations (instead of regular triangular lattice)

Same questions:
- Critical probability?
- Crossing probabilities?
- Law of interfaces?
- Mixing properties?

[Curien,Kortchemski 17, Bernardi, Curien, Miermont 18].

We can also consider infinite random planar triangulations
[Angel, Schramm 04, Angel 03, Angel, Curien 12].
Percolation on random lattices

Is it interesting to consider random lattices?
Percolation on random lattices

Is it interesting to consider random lattices?

YES!

The behavior on regular/random lattices are related (conjecturally)
Percolation on random lattices

Is it interesting to consider random lattices?

YES!

The behavior on regular/random lattices are related (conjecturally)

Model on random lattices

Model on regular lattice measured against Gaussian free field

Conjecture
Percolation on random lattices

Is it interesting to consider random lattices?

YES!

The behavior on regular/random lattices are related (conjecturally)

Model on regular lattice measured against Gaussian free field

Model on random lattices

Conjecture

Would imply KPZ formula [Knizhnik, Polyakov, Zamolodchikov]: Conjecture relating critical exponents regular Vs random lattices.
The bijection
Kreweras walks

Def. $\mathcal{K} =$ set of lattice walks on \mathbb{N}^2 starting and ending at $(0, 0)$ and made of steps $(1, 0), (0, 1), (-1, -1)$.
Percolated triangulations

Def. $\mathcal{T} = \text{set of rooted, loopless, planar triangulations, with site-percolation, such that the root-edge goes from white to black.}$
Bijection

Percolated triangulation

3n edges
(n+2 vertices)

Kreweras walks

3n steps
Bijection

Percolated triangulation

$3n$ edges
$(n+2$ vertices)

$2^n \cdot \frac{2^n}{(n+1)(2n+1)} \binom{3n}{n}$

Kreweras walks

$3n$ steps

$\frac{4^n}{(n+1)(2n+1)} \binom{3n}{n}$
Duality

Def. The dual M^* of a map M is obtained by:
Duality

Def. The **dual** \(M^* \) of a map \(M \) is obtained by:
- placing a vertex of \(M^* \) in each face of \(M \)
Duality

Def. The **dual** M^* of a map M is obtained by:

- placing a vertex of M^* in each face of M
- drawing an edge of M^* across each edge of M
Duality

Def. The **dual** M^* of a map M is obtained by:
- placing a vertex of M^* in each face of M
- drawing an edge of M^* across each edge of M
Duality

Def. The dual M^* of a map M is obtained by:
- placing a vertex of M^* in each face of M
- drawing an edge of M^* across each edge of M

Duality: Triangulation \leftrightarrow Cubic map (vertices of degree 3)
 loopless \leftrightarrow bridgeless
Duality

Def. The **dual** M^* of a map M is obtained by:

- placing a vertex of M^* in each face of M
- drawing an edge of M^* across each edge of M

Duality:

- Triangulation \leftrightarrow Cubic map (vertices of degree 3)
- loopless \leftrightarrow bridgeless
- Site percolation \leftrightarrow face percolation
Face-percolated cubic maps

Kreweras walks
Exploration tree

Def. A spanning tree of a rooted map is a **DFS-tree** if every external edge links a vertex to one of its ancestors.
Exploration tree

Prop. For any bridgeless cubic map, there is a **bijection** between
- DFS-tree not containing root
- face-percolation with root having white/black on its left/right.
Exploration tree

Prop. For any bridgeless cubic map, there is a **bijection** between
- DFS-tree not containing root
- face-percolation with root having white/black on its left/right.

From perco to DFS-tree:
Explore map depth-first by turning left/right at black/white faces.
Exploration tree

Prop. For any bridgeless cubic map, there is a *bijection* between
- DFS-tree not containing root
- face-percolation with root having white/black on its left/right.

From DFS-tree to perco:
Color white/black the faces at the left/right of tree.
The bijection $\Phi : \mathcal{K} \rightarrow \mathcal{T}$

$aababbacbccabcabcc$
The bijection $\Phi : \mathcal{K} \to \mathcal{T}$

$$aababbacbcacbabc$$
The bijection $\Phi : \mathcal{K} \rightarrow \mathcal{T}$
The bijection $\Phi : K \rightarrow T$

$aababbacbccabcc$
The bijection $\Phi : \mathcal{K} \to \mathcal{T}$

$$aababbacbccabcc$$
The bijection $\Phi : \mathcal{K} \rightarrow \mathcal{T}$

$\Phi(aababbacbccabcc)$
The bijection $\Phi : \mathcal{K} \rightarrow \mathcal{T}$

Φ

$aababbacbcabcabcc$
The bijection $\Phi : \mathcal{K} \to \mathcal{T}$

$aababbacbccabcc$
The bijection $\Phi : \mathcal{K} \rightarrow \mathcal{T}$

aababbacbccabcc

Φ

\mathcal{K}

\mathcal{T}
The bijection $\Phi : \mathcal{K} \to \mathcal{T}$

$\texttt{aababbacbccabcc}$
The bijection $\Phi : \mathcal{K} \to \mathcal{T}$

Φ:

```
aababbacbcccabcc
```

Diagram: Three axes labeled a, b, and c. A blue path is shown and mapped to a red path labeled Φ. The green arrow points up at the end of the red path.
The bijection $\Phi : \mathcal{K} \rightarrow \mathcal{T}$

Φ

$aababbacbcabbccabcc$
The bijection $\Phi : \mathcal{K} \rightarrow \mathcal{T}$

Φ

$aababbabcabccabcc$

Φ

\mathcal{K}

\mathcal{T}
The bijection $\Phi : \mathcal{K} \rightarrow \mathcal{T}$
The bijection $\Phi : K \to T$

Φ

aababbacbcabbcc
The bijection $\Phi : \mathcal{K} \to \mathcal{T}$

$aababbacbccabcc$
The bijection $\Phi : \mathcal{K} \rightarrow \mathcal{T}$
The bijection $\Phi : K \to \mathcal{T}$

Φ

$aababbacbccabcabcc$
The bijection $\Phi : \mathcal{K} \to \mathcal{T}$

Thm. The map Φ is a bijection between \mathcal{K} and \mathcal{T}.
Variants of the bijection

Spherical case

Disk case

IUPT case
Dictionary: maps \leftrightarrow walks

<table>
<thead>
<tr>
<th>triangulation</th>
<th>walk</th>
</tr>
</thead>
<tbody>
<tr>
<td>edges</td>
<td>steps</td>
</tr>
<tr>
<td>left-boundary length</td>
<td>x-coordinate of walk</td>
</tr>
<tr>
<td>vertices</td>
<td>c-steps</td>
</tr>
<tr>
<td>black vertices</td>
<td>c steps of type abc</td>
</tr>
<tr>
<td>black percolation cluster</td>
<td>c-steps of type abc such that abc enclosed by bc parenthesis.</td>
</tr>
<tr>
<td>perco-interface toward ν</td>
<td>walk of excursions</td>
</tr>
</tbody>
</table>
Dictionary: maps \leftrightarrow walks

<table>
<thead>
<tr>
<th>Triangulation</th>
<th>Walk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edges</td>
<td>Steps</td>
</tr>
<tr>
<td>Left-boundary length</td>
<td>x-coordinate of walk</td>
</tr>
<tr>
<td>Vertices</td>
<td>c-steps</td>
</tr>
<tr>
<td>Black vertices</td>
<td>c steps of type abc</td>
</tr>
<tr>
<td>Black percolation cluster</td>
<td>c-steps of type abc such that abc enclosed by bc parenthesis.</td>
</tr>
<tr>
<td>Perco-interface toward v</td>
<td>Walk of excursions</td>
</tr>
</tbody>
</table>
Dictionary: perco-interface to $\nu \longleftrightarrow$ walk of excursions
Dictionary: perco-interface to $\nu \longleftrightarrow$ walk of excursions

- Empty the bubles
- Shuffle of 2 looptrees
- Flatten each sub-excursion into a single step
- Flattened walk
Dictionary: perco-interface to $v \leftrightarrow$ walk of excursions

Flatten each sub-excursion into a single step
Random 2D geometries
(and some big conjectures)
Random 2D geometries

SLE curves

Schramm
Lawler
Werner
Smirnoff
...

GFF

Sheffield
Kenyon
Miller
...

Brownian map

Schaeffer
Le Gall
Miermont
...
Random 2D geometries

SLE curves

Sheffield
Miller
Werner

... Schramm
Lawler
Werner
Smirnoff
...
What is... a **SLE curve** (**Schramm–Loewner evolution**)?

A curve SLE_κ is a random (non-crossing) curve in the plane with
- conformal invariance property
- Markov domain property

The parameter κ determines how much the curves wiggles.
What is... a **SLE curve** (Schramm–Loewner evolution)?

A curve \(\text{SLE}_\kappa \) is a random (non-crossing) curve in the plane with

- conformal invariance property
- Markov domain property

The parameter \(\kappa \) determines how much the curves wiggles.

SLE curves are proved/conjectured to be scaling limit of curves from statistical mechanics models on regular lattice.
What is... a **SLE curve** (Schramm–Loewner evolution)?

A curve SLE_κ is a random (non-crossing) curve in the plane with

- conformal invariance property
- Markov domain property

The parameter κ determines how much the curves wiggles.

SLE curves are proved/conjectured to be scaling limit of curves from statistical mechanics models on regular lattice.
What is... the **GFF** (Gaussian Free Field)?

Discrete version: Let $h(x, y)$ be a function on $\{1, 2, \ldots, n\}^2$ chosen with probability density proportional to

$$\exp \left(- \frac{1}{2} \sum_{(u,v)} (h(u) - h(v))^2 \right).$$

Value of GFF
(image by J. Miller)
What is... the **GFF** (Gaussian Free Field)?

Discrete version: Let \(h(x, y) \) be a function on \(\{1, 2, \ldots, n\}^2 \) chosen with probability density proportional to

\[
\exp \left(-\frac{1}{2} \sum_{(u,v)} (h(u) - h(v))^2 \right).
\]

Use \(h \) to define a (random) "density of area" on the square:

\[
\mu_{GFF}(v) := \exp(\gamma h(v)),
\]

for some \(\gamma \in [0, 2] \) (controlling the wildness of \(\mu_{GFF} \)).

GFF area density for \(\gamma = 1.5 \)
(image by J. Miller)
What is... the GFF (Gaussian Free Field)?

Discrete version: Let $h(x, y)$ be a function on $\{1, 2, \ldots, n\}^2$ chosen with probability density proportional to

$$\exp\left(-\frac{1}{2} \sum_{(u,v)} (h(u) - h(v))^2\right).$$

Use h to define a (random) "density of area" on the square:

$$\mu_{GFF}(v) := \exp(\gamma h(v)),$$

for some $\gamma \in [0, 2]$ (controlling the wildness of μ_{GFF}).

Continuous version:

Complications because h no longer a function (only distribution). Can still make sense of h and $\mu_{GFF}(dz) = \exp(\gamma h)dz$.

GFF area density for $\gamma = 1.5$
(image by J. Miller)
What is... the Brownian map?

Take a uniformly random planar triangulation T_n with n triangles of side length $n^{-1/4}$.
What is... the Brownian map?

Take a uniformly random planar triangulation T_n with n triangles of side length $n^{-1/4}$.

Thm [LeGall, Miermont]: The random metric space T_n converges in law (for the Gromov Hausdorff topology).

The limit is a random compact metric space (homeomorphic to 2D sphere, but with Hausdorff dimension 4). We call it **Brownian map**.
Peanosphere bijection

Thm [Duplantier, Miller, Sheffield]:
There is a bijection (σ-algebra preserving map):

\[\text{GFF} \sqrt{\frac{8}{3}} + \text{CLE}_6 \]
(independent, on the disk)

Brownian motion in 1/3-plane
(from (1,0) to (0,0))
Peanosphere bijection

Thm [Duplantier, Miller, Sheffield]:
There is a bijection \((\sigma\text{-algebra preserving map})\):

\[
\text{GFF} \sqrt{\frac{8}{3}} + \text{CLE}_6
\]

(independent, on the disk)

Brownian motion in 1/3-plane
(from \((1,0)\) to \((0,0)\))

Our bijection is the **exact discrete analogue**!
(but with maps on left-hand side)
Percolation on random triangulations and \(\text{GFF} \sqrt{8/3} + \text{CLE}_6 \)

Thm [B., Holden, Sun]: Let \(k > 0 \).

Let \(C_1^n, \ldots, C_k^n \) be the \(k \) longest percolation interfaces in a uniformly random percolated triangulation of size \(n \) (disk topology).

Let \(D_1, \ldots, D_k \) be the \(k \) longest loops in \((\text{GFF} \sqrt{8/3}, \text{CLE}_6)\).

Then, \((\text{length}(C_i^n), \text{area}(C_i^n), \text{pivotal}(C_i^n), \text{pivotal}(C_i^n, C_j^n))_{i,j \in [k]}\)
converges to \((\text{length}(D_i), \text{area}(D_i), \text{pivotal}(D_i), \text{pivotal}(D_i, D_j))_{i,j \in [k]}\).
Percolation on random triangulations and $\text{GFF } \sqrt{\frac{8}{3}} + \text{CLE}_6$

Proof (sketch):

- Convergence of walk
- + convergence of loop quantities
Percolation on random triangulations and GFF $\sqrt{\frac{8}{3}} + \text{CLE}_6$

Proof (sketch):

Convergence of walk + convergence of loop quantities
The big conjecture:

random map \rightarrow \text{“natural”} \text{ embedding } \epsilon \rightarrow \text{random density of points (in law)} \rightarrow \text{GFF } \sqrt{\frac{8}{3}}
The big conjecture:

random map

"natural" embedding ϵ

(random density of points)

+ percolation interfaces

$\sqrt{8/3}$

GFF + CLE$_6$
Work in progress [Garban, Gwynne, Holden, Miller, Sepulveda, Sheffield, Sun]

Want to show big conjecture holds for $\epsilon = \textbf{Cardy embedding}$

where $p_i = \mathbb{P}_{\text{perco}}$
Work in progress [Garban, Gwynne, Holden, Miller, Sepulveda, Sheffield, Sun]

Key ingredient needed:

- Same triangulation
- 2 independent percolations

- Same GFF
- 2 independent CLE

2 Kreweras walks

2 Brownian motions
Thanks.