Satellites and Universal Functors

David A. Buchsbaum

Stable URL: http://links.jstor.org/sici?sici=0003-486X%28196003%292%3A71%3A2%3C199%3ASAUF%3E2.0.CO%3B2-3

SATelliteS AND Universal FunCTORS

By David A. Buchsbaum

(Received July 20, 1959)

Introduction

In [3], Cartan and Eilenberg showed that if Λ is a ring (with identity element) and A and C are two (left) Λ-modules, then one can define for each integer $n \geq 0$, an abelian group $\text{Ext}_{\Lambda}^n(A, C)$, with $\text{Ext}_{\Lambda}^n(A, C) = \text{Hom}_{\Lambda}(A, C)$ the group of Λ-homomorphisms of A into C. Moreover, if $\alpha: A \to A'$, $\gamma: C' \to C$ are Λ-homomorphisms, then one has induced maps $\gamma_*: \text{Ext}^n(A, C') \to \text{Ext}^n(A, C)$ and $\alpha^*: \text{Ext}^n(A', C) \to \text{Ext}^n(A, C)$. The definition of the functors $\text{Ext}^n(A, C)$ relied heavily on the existence of sufficiently many projective modules in the category of all Λ-modules.

In a recent note [1], we showed that it is possible to define the functors $\text{Ext}^n(A, C)$ in an arbitrary exact category \mathcal{A} without the use of projective or injective objects. In fact, we defined functors \mathcal{I}-$\text{Ext}^n(A, C)$ where \mathcal{I} is a family of monomorphisms of \mathcal{A} satisfying certain conditions (an h.f. class [1]). It was therefore natural to suppose that if T is an additive functor from the category \mathcal{A} to the category \mathcal{B}, then one should be able to define the derived (or satellite) functors of T, [3], without recourse to injectives or projectives. We show in this note that this can be done, provided we assume that direct (or inverse) limits exist in the category \mathcal{B}. Derived functors \mathcal{I}-S^nT, relative to an h. f. class of monomorphisms \mathcal{I} can also be obtained.

By considering universal functors, we can show that if \mathcal{X} is a topological space, and Φ is a family of paracompact supports in the sense of Cartan [2], then $H^q(\mathcal{X}, C)$ can be expressed as a satellite of Γ_Φ, where $H^q(\mathcal{X}, C)$ denotes the Φ-cohomology of \mathcal{X} with coefficients in the sheaf C, and $\Gamma_\Phi(C)$ is the module of sections of C with supports in Φ. We also show that if V is a projective variety, then $H^q(V, C) \approx \text{Ext}^q(\mathcal{O}, C) \approx S^q\Gamma(C)$ where C is a coherent algebraic sheaf over V, \mathcal{O} is the sheaf of local rings of V, and $\text{Ext}^q(\mathcal{O}, C)$ and $S^q\Gamma(C)$ are defined strictly in the category of coherent algebraic sheaves.

1. Definition of S^nT

Let T be a contravariant additive functor from the exact category \mathcal{A} to the exact category \mathcal{B}. Denote by P the exact sequence

$$0 \longrightarrow M \longrightarrow P \longrightarrow A \longrightarrow 0.$$
Now let \(\mathcal{D}_A = \{P\} \) be the totality of all such exact sequences in \(A \). We introduce a partial ordering in \(\mathcal{D}_A \) as follows: \(P' < P \) if there exists a map from \(P \) to \(P' \) over \(A \), i.e., if there is a commutative diagram

\[
\begin{array}{ccc}
0 & \rightarrow & M \\
g & \downarrow & f \\
0 & \rightarrow & M' \rightarrow P' \rightarrow A \rightarrow 0
\end{array}
\]

This is equivalent to saying that \(P' < P \) if there is a map \(g: M \rightarrow M' \) such that under the map \(g_x: \text{Ext}^i(A, M) \rightarrow \text{Ext}^i(A, M') \), the sequence \(P \) is carried into the sequence \(P' \) (i.e., \(P' = g_xP \)).

Proposition 1.1. With the above ordering, \(\mathcal{D}_A \) is a directed class.

Proof. What we must show is that if \(P_1, P_2 \) are in \(\mathcal{D}_A \), then there is a \(P \) in \(\mathcal{D}_A \) such that \(P > P_1, P > P_2 \). To this end, denote by \(\Delta: A \rightarrow A + A \) the diagonal map (i.e., \(\Delta = i_1 + i_2 \) where \(i_1 \) and \(i_2 \) are the injections of \(A \) into \(A + A \)). Then for any \(C \) in \(A \), we have \(\Delta^*: \text{Ext}^i(A + A, C) \rightarrow \text{Ext}^i(A, C) \). In particular, let \(P_1 + P_2 \) be the exact sequence

\[
\begin{array}{ccc}
0 & \rightarrow & M_1 + M_2 \\
& \rightarrow & P_1 + P_2 \\
& \rightarrow & A + A \rightarrow 0
\end{array}
\]

and let \(P = \Delta^*(P_1 + P_2): 0 \rightarrow M_1 + M_2 \rightarrow P \rightarrow A \rightarrow 0 \). Then it is clear that \(P \) dominates both \(P_1 \) and \(P_2 \).

One can define \(P \) directly as follows. If \(0 \rightarrow M_1 \rightarrow P_1 \xrightarrow{\beta_1} A \rightarrow 0 \), \(0 \rightarrow M_2 \rightarrow P_2 \xrightarrow{\beta_2} A \rightarrow 0 \) represent \(P_1 \) and \(P_2 \) respectively, then we may obtain the exact sequence

\[
\begin{array}{ccc}
0 & \rightarrow & P \\
& \rightarrow & P_1 + P_2 \xrightarrow{\gamma} A \rightarrow 0
\end{array}
\]

where \(\gamma = \beta_1 p_1 - \beta_2 p_2 \) and \(p_1, p_2 \) are the projections of \(P_1 + P_2 \) onto \(P_1 \) and \(P_2 \) respectively. \(P \), then, is the kernel of \(\gamma \). In terms of modules, we see that \(P = \{ (u_1, u_2) | u_1 \in P_1, u_2 \in P_2 \text{ and } \beta_1 u_1 = \beta_2 u_2 \} \).

Proposition 1.2. If

\[
\begin{array}{ccc}
0 & \rightarrow & M \\
g & \downarrow & f \\
0 & \rightarrow & M' \rightarrow P' \rightarrow A \rightarrow 0
\end{array}
\]

is a commutative diagram with exact rows, then we obtain a commutative diagram

\[
\begin{array}{ccc}
T(P') & \rightarrow & T(M') \\
& \downarrow & \downarrow \phi_{P'} \\
T(P) & \rightarrow & T(M) \rightarrow F_{P'} \rightarrow 0
\end{array}
\]
and \(\theta^*_{\rho} \) is independent of the choice of \(g \) (and \(f \)).

The proof is left to the reader.

We therefore have for each \(P \) in \(\mathcal{P}_A \), an object \(F_P \) in \(\mathcal{B} \), and for each \(P' < P \) a uniquely defined map \(\theta^*_{\rho_{P'}} : F_{P'} \rightarrow F_P \) satisfying the usual transitivity conditions. Making logical adjustments that are necessary to reconcile sets with classes (for instance, assume that the objects of \(\mathcal{A} \) form a set), we obtain a direct system of objects \(\{F_{P'}; \theta^*_{\rho_{P'}}\} \) in \(\mathcal{B} \). Since we are assuming that direct limits exist in \(\mathcal{B} \), we may define

\[
S^iT(A) = \text{Dir lim}\{F_{P'}; \theta^*_{\rho_{P'}}\}.
\]

If \(f : A \rightarrow B \) is a map, we define a map \(S^iT(f) : S^iT(B) \rightarrow S^iT(A) \) in the following way: to each exact sequence \(P : 0 \rightarrow M \rightarrow P \rightarrow B \rightarrow 0 \) in \(\text{Ext}^i(B, M) \), we assign the exact sequence \(f^*(P) \) in \(\text{Ext}^i(A, M) \). We thus obtain an exact sequence \(0 \rightarrow M \rightarrow P' \rightarrow A \rightarrow 0 \) in \(\mathcal{P}_A \) and a commutative diagram

\[
\begin{array}{cccc}
0 & \rightarrow & M & \rightarrow & P' & \rightarrow & A & \rightarrow & 0 \\
& & \| & & \downarrow & & \downarrow & & \\
0 & \rightarrow & M & \rightarrow & P & \rightarrow & B & \rightarrow & 0.
\end{array}
\]

Thus to each \(P \) in \(\mathcal{P}_B \), we have assigned an element \(f^*(P) = P' \) in \(\mathcal{P}_A \), and it is clear that \(f^* \) is order-preserving. Moreover, the commutative diagram above yields the commutative diagram

\[
\begin{array}{cccc}
T(P) & \rightarrow & T(M) & \rightarrow & F_P & \rightarrow & 0 \\
\downarrow & & \downarrow & \downarrow & \downarrow_{\rho_P} & & \\
T(P') & \rightarrow & T(M) & \rightarrow & G_{P'} & \rightarrow & 0.
\end{array}
\]

Furthermore, if \(P_1 < P_2 \), we have the commutative diagram

\[
\begin{array}{ccc}
F_{P_1} & \xrightarrow{\rho_{P_1}} & G_{f^*(P_1)} \\
\downarrow & & \downarrow \\
F_{P_2} & \xrightarrow{\rho_{P_2}} & G_{f^*(P_2)}
\end{array}
\]

so that the system of maps \((f^*, \{\rho_P\}) \) is a map from the direct system defining \(S^iT(B) \) to that defining \(S^iT(A) \). We therefore obtain a unique map \(S^iT(f) : S^iT(B) \rightarrow S^iT(A) \), and it is clear that \(S^iT \) is a contravariant additive functor.

The functors \(S^nT \) are defined as follows:

\[
S^nT = S^i(S^{n-1}T)
\]

for \(n > 1 \).

So far the discussion has been devoted to contravariant functors and their right satellites. If \(T \) is a covariant functor, we may define \(S^nT \) in the following way.
Let \mathcal{A}^* denote the dual category of \mathcal{A} (i.e., the objects of \mathcal{A}^* are the same as those of \mathcal{A}, and $H^*(A, B)$ in \mathcal{A}^* is defined to be $H(B, A)$). Given the covariant functor $T: \mathcal{A} \to \mathcal{B}$, we may define the contravariant functor $T^*: \mathcal{A}^* \to \mathcal{B}$ by setting $T^*(A) = T(A)$. We then define $S^n T: \mathcal{A} \to \mathcal{B}$ by setting $S^n T(A) = S^n T^*(A)$.

If $T: \mathcal{A} \to \mathcal{B}$ is a functor, and \mathcal{B} has inverse limits, then \mathcal{B}^* (the dual category of \mathcal{B}) has direct limits and the right satellites $S^n U: \mathcal{A} \to \mathcal{B}^*$ are defined, where $U: \mathcal{A} \to \mathcal{B}^*$ is defined by $U(A) = T(A)$. We may therefore define the left satellites $S_n T: \mathcal{A} \to \mathcal{B}$ by setting $S_n T(A) = S^n U(A)$.

2. The exact sequence

If we have an exact sequence $0 \to A' \to A \to A'' \to 0$ in \mathcal{A}, we will define a map $\delta^s: S^n T(A') \to S^{n+1} T(A'')$. It is obviously sufficient to do this for $\delta^s: T(A') \to S^1 T(A'')$. However, this is trivial for we have

$$
T(A) \Rightarrow T(A') \begin{array}{c} a \end{array} F_A \Rightarrow 0
$$

exact, and the canonical map $h_A: F_A \to S^1 T(A'')$ (since A, or $0 \to A' \to A \to A'' \to 0$ is in \mathcal{D}_A, and thus F_A is part of the defining system for $S^1 T(A'')$).

We therefore define δ^s to be $h_A a: T(A') \to S^1 T(A'')$.

Before stating the next theorem, let us recall that a (contravariant) functor T is called half-exact [3] if for every exact sequence $0 \to A' \to A \to A'' \to 0$, the sequence $T(A') \to T(A) \to T(A')$ is exact.

Theorem 2.1. Let T be a half-exact contravariant functor from \mathcal{A} to \mathcal{B}, and let $0 \to A' \begin{array}{c} r \end{array} A \begin{array}{c} \sigma \end{array} A'' \to 0$ be exact. Then if $\mathcal{B} = \mathcal{M}_\Lambda$, i.e., if \mathcal{B} is the category of (left) modules over some ring Λ (or any category of objects with elements which preserves exact sequences under direct limits), the sequence

$$
T(A'') \to T(A) \to T(A') \to S^1 T(A'') \to S^1 T(A) \to \cdots
$$

$$
\to S^n T(A') \to S^{n+1} T(A'') \to S^{n+1} T(A) \to \cdots
$$

is exact.

Proof. We will merely sketch the proof, and occasionally use language as though \mathcal{A} were a category of modules. All statements are valid for an arbitrary exact category.

First, we will show that $S^1 T$ is half-exact. From this it will follow that $S^n T$ is also.

Let $0 \to M \begin{array}{c} u \end{array} P \begin{array}{c} v \end{array} A \to 0$ be in \mathcal{D}_A. Then we make the following two observations:

2 Grothendieck [4] has been able to handle functors whose range is a category satisfying his axiom AB5.
(a) we obtain an exact sequence $0 \longrightarrow P' \longrightarrow P \overset{\tau v}{\longrightarrow} A'' \longrightarrow 0$ in $\mathcal{D}_{A''}$, and the set of all such elements in $\mathcal{D}_{A''}$, i.e., those obtained in this way from \mathcal{D}_A, is cofinal in $\mathcal{D}_{A''}$;

(b) P' is the counter-image of A' in P and the exact sequence $0 \longrightarrow M \longrightarrow P' \longrightarrow A' \longrightarrow 0$ is the one induced by $0 \longrightarrow M \longrightarrow P \longrightarrow A \longrightarrow 0$ under the map $\gamma: A' \to A$ (i.e., $P' = \gamma^*(P)$).

We can thus consider the commutative diagram

\[
\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 & M & N \longrightarrow P' \longrightarrow 0 \\
\downarrow^s & \downarrow^h & \downarrow^{u'} \\
0 & P' \rightarrow P' + P \rightarrow P \longrightarrow 0 \\
\downarrow^t & \downarrow^g & \downarrow^{\tau v} \\
0 & A' \overset{\gamma}{\longrightarrow} A \overset{\tau}{\longrightarrow} A'' \longrightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array}
\]

where $g(p', p) = \gamma t(p') + v(p)$. Not only are all the rows and columns exact, but the top two rows split (the middle one by construction). We therefore obtain the commutative diagram

\[
\begin{array}{ccc}
0 & T(P) & T(P' + P) \longrightarrow T(P') \longrightarrow 0 \\
\downarrow^{T(u')} & \downarrow^{T(h)} & \downarrow^{T(s)} \\
0 & T(P') & T(N) \longrightarrow T(M) \longrightarrow 0
\end{array}
\]

with split exact rows, and hence an exact sequence $F''_p \longrightarrow F'_{p'} + F'_{p'} \longrightarrow 0$ where $F''_p = \text{Coker } T(u'), F'_{p'} + F'_{p'} = \text{Coker } T(h), F'_{p'} = \text{Coker } T(s)$.

It can be shown without too much difficulty that the set of exact sequences $0 \longrightarrow N \longrightarrow P' + P \longrightarrow A \longrightarrow 0$ obtained as above from exact sequences $0 \longrightarrow M \longrightarrow P \longrightarrow A \longrightarrow 0$ is cofinal in \mathcal{D}_A. Thus, by taking direct limits of the exact sequences $F''_p \longrightarrow F'_{p'} + F'_{p'} \longrightarrow 0$, we obtain an exact sequence

$S^1T(A'') \longrightarrow S^1T(A) \longrightarrow \lim_{\rightarrow} \{F'_{p'}\}.$

The map $S^1T(A'') \longrightarrow S^1T(A)$ so obtained is easily seen to be $S^1T(\tau)$. Moreover, the composition $S^1T(A) \longrightarrow \lim_{\rightarrow} \{F'_{p'}\} \longrightarrow S^1T(A')$ is seen to be $S^1T(\gamma)$. Hence, if we show that the map $\lim_{\rightarrow} \{F'_{p'}\} \longrightarrow S^1T(A)$ is a monomorphism, we will have the half-exactness of S^1T.

We suppose that $0 \rightarrow M \xrightarrow{a} P' \xrightarrow{t} A' \rightarrow 0$ is obtained from $0 \rightarrow M \xrightarrow{u} P \xrightarrow{v} A \rightarrow 0$, and let

$$
0 \rightarrow C \xrightarrow{u} Q \xrightarrow{v} A' \rightarrow 0
$$

be commutative (Q in $\mathcal{D}_{A'}$). We construct the exact sequence

$$
0 \rightarrow D \xrightarrow{k} P + Q \rightarrow A \rightarrow 0
$$

where $k(p, q) = v(p) + \gamma \bar{v}(q)$, and observe that the sequence induced over A' by this exact sequence is simply $0 \rightarrow D \rightarrow P' + Q \rightarrow A' \rightarrow 0$. The commutative diagram

$$
\begin{array}{ccc}
0 & \rightarrow & 0 \\
\downarrow & & \downarrow \\
0 & \xrightarrow{u} & C \xrightarrow{\bar{v}} Q \xrightarrow{v} A' \rightarrow 0 \\
\downarrow & & \downarrow \\
0 & \rightarrow & D \xrightarrow{\gamma} P' + Q \xrightarrow{\bar{v}} A' \rightarrow 0 \\
\downarrow & & \downarrow \\
P' & = & P' \\
\downarrow & & \downarrow \\
0 & & 0 \\
\end{array}
$$

with exact rows and columns, yields

$$
\begin{array}{cccc}
0 & \rightarrow & T(P') & \rightarrow T(P' + Q) & \rightarrow T(Q) & \rightarrow 0 \\
\downarrow & & \downarrow & & \downarrow & \\
T(P') & \rightarrow & T(D) & \rightarrow & T(C) & \\
\downarrow & & \downarrow & & \downarrow & \\
0 & \rightarrow & F' & \rightarrow & F'_q & \\
\downarrow & & \downarrow & & \downarrow & \\
0 & & 0 & & 0 & \\
\end{array}
$$

with rows and columns exact. Since we have a commutative diagram
0 \longrightarrow D \longrightarrow P' + Q \longrightarrow A' \longrightarrow 0
\downarrow \quad \downarrow \quad \parallel
0 \longrightarrow M \longrightarrow P' \longrightarrow A' \longrightarrow 0,

we see that the map \(F'_{p'} \rightarrow F'_q \) is factorable: \(F'_{p'} \rightarrow F' \rightarrow F'_q \). Thus, if \(f' \) is in \(\text{Ker}(F'_{p'} \rightarrow F'_q) \), it is in \(\text{Ker}(F'_{p'} \rightarrow F') \). This implies that the map \(\lim \{ F'_{p'} \} \rightarrow S'T(A') \) is a monomorphism.

The proofs of exactness of \(T(A) \longrightarrow T(A') \overset{\beta}{\longrightarrow} S'T(A'') \) and \(T(A') \overset{\beta}{\longrightarrow} S'T(A'') \longrightarrow S'T(A) \) are analogous to those in [3, Chap III, section 3] with minor modifications to allow for direct limits.

The above theorem holds, of course, when \(T \) is covariant, since no modifications of the range category \(\mathcal{B} \) are necessary in order to define the right satellites of a covariant functor.

The situation for left satellites seems to be a bit mysterious. All we can say so far is that if \(T: \mathcal{A} \rightarrow \mathcal{B} \) is a half-exact functor, then the exactness of the left-satellite sequence

\[
\cdots \longrightarrow S_n T(A') \longrightarrow S_{n-1} T(A'') \longrightarrow \cdots \longrightarrow T(A) \longrightarrow T(A')
\]

is equivalent to the exactness of the right-satellite sequence

\[
U(A') \rightarrow U(A) \rightarrow U(A'') \rightarrow S^1 U(A') \rightarrow \cdots \rightarrow S^n U(A'') \rightarrow S^{n+1} U(A') \rightarrow \cdots
\]

where \(U: \mathcal{A} \rightarrow \mathcal{B}^* \) is defined by \(U(A) = T(A) \).

3. The relative satellites

In this section, we assume that \(\mathcal{J} \) is an h.f. class of monomorphisms of \(\mathcal{A} \) (see [1]). We then let \(\mathcal{I}D_A \) be the class of all exact sequences \(\{0 \rightarrow M \rightarrow P \rightarrow 0\} \) where the monomorphism \(M \rightarrow P \) is in \(\mathcal{J} \). It is clear that \(\mathcal{I}D_A \) is a subclass of \(\mathcal{D}_A \), and with the induced ordering is a directed subclass. We may therefore define \(\mathcal{J}S'T(A) \) to be the limit of the direct system in \(\mathcal{B} \) taken over \(\mathcal{I}D_A \). \(\mathcal{J}S^A T(A) \) is defined to be \(\mathcal{J}S'(\mathcal{J}S^{A-1} T(A)) \).

In order to prove a theorem analogous to 2.1, we must impose the following additional condition on the h.f. class \(\mathcal{J} \):

\((*)\) If

\[
\begin{array}{c}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 & A' & A' \\
\rho' \downarrow & \rho' \downarrow & \rho' \\
0 & B' & B' \\
\downarrow & \downarrow & \downarrow \\
0 & C' & C' \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array}
\]
is a commutative diagram with exact rows and columns such that α', β', γ', ρ', ρ'' are in \mathcal{I}, then ρ is also in \mathcal{I}.

We now obtain

Theorem 3.1. Let \mathcal{I} be an h.f. class satisfying the additional condition (\ast), let $0 \rightarrow A' \overset{i}{\rightarrow} A \overset{r}{\rightarrow} A'' \rightarrow 0$ be an exact sequence with γ in \mathcal{I}, and let T be a half-exact functor $T: \mathcal{A} \rightarrow \mathcal{M}_\Lambda$ (where \mathcal{M}_Λ is as in 2.1). Then the sequence

$$T(A'') \rightarrow T(A) \rightarrow T(A') \rightarrow \mathcal{I} \cdot S^1 T(A'') \rightarrow \mathcal{I} \cdot S^1 T(A) \rightarrow \cdots$$

$$\rightarrow \mathcal{I} \cdot S^n T(A') \rightarrow \mathcal{I} \cdot S^{n+1} T(A'') \rightarrow \mathcal{I} \cdot S^{n+1} T(A) \rightarrow \cdots$$

is exact.

The proof of this theorem follows from that of 2.1 if one observes that all the monomorphisms constructed in the proof of 2.1 are in \mathcal{I}.

4. Universal functors

We recall that a connected sequence of functors (contravariant) [3], is a sequence $\{T^n\}_{n \geq 0}$ of (contravariant) functors together with maps $\delta^n_\epsilon: T^n(A') \rightarrow T^{n+1}(A'')$ for every short exact sequence $E: 0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$ such that

(a) for every exact sequence $E: 0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$, the sequence

$$T(E): \ T^n(A'') \rightarrow T^n(A) \rightarrow T^n(A') \rightarrow T^{n+1}(A') \rightarrow T^{n+1}(A) \rightarrow \cdots$$

$$\rightarrow T^n(A') \rightarrow T^{n+1}(A'') \rightarrow T^{n+1}(A) \rightarrow \cdots$$

is of order two;

(b) for every commutative diagram of exact sequences

$$0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$$

$$0 \rightarrow B' \rightarrow B \rightarrow B'' \rightarrow 0,$$

the diagram

$$T^n(B') \rightarrow T^{n+1}(B'')$$

$$\downarrow \quad \downarrow$$

$$T^n(A') \rightarrow T^{n+1}(A'')$$

commutes.

The connected sequence of functors is called **exact** if for every exact sequence E, the sequence $T(E)$ is exact. It is called **universal** [4] if for any connected sequence $\{U^n\}$ and any natural transformation $\lambda_0: T^0 \rightarrow U^0$,
there is a unique extension \(\lambda = \{ \lambda^n: T^n \to U^n \} \) such that for every exact sequence \(E \), the diagram

\[
\begin{array}{ccc}
T^n(A') & \longrightarrow & T^{n+1}(A'') \\
\downarrow & & \downarrow \\
U^n(A') & \longrightarrow & U^{n+1}(A'')
\end{array}
\]

commutes.

Proposition 4.1. Let \(T: \mathcal{A} \to \mathcal{B} \) be a contravariant functor, and let \(\mathcal{B} \) have direct limits. Then the connected (not necessarily exact) sequence of functors \(\{ S^nT \} \), with \(S^0T = T \), is universal.

The construction of \(S^nT \) as direct limits forces the universality of the sequence of functors. In fact, one might have used the motivation of constructing a universal connected sequence of functors beginning with \(T \) as a means of obtaining the satellites. We will therefore not give a proof of this proposition.

Proposition 4.2. Let \(T = \{ T^n \} \) be an exact, connected sequence of (contravariant) functors with \(T^n: \mathcal{A} \to \mathcal{M}_\lambda \). If for each \(A \) in \(\mathcal{A} \), each positive integer \(n \), and each \(t \) in \(T^n(A) \) there is an exact sequence \(E_t: 0 \to M \to P \to A \to 0 \) such that \(t \) goes into zero under the map \(T^n(A) \to T^n(P) \), then \(T = \{ T^n \} \) is universal.

Proof. Let \(U = \{ U^n \} \) be any connected sequence of (contravariant) functors, \(U^n: \mathcal{A} \to \mathcal{M}_\lambda \), and let \(\lambda^0: T^0 \to U^0 \) be a natural transformation. We will define the extension \(\lambda = \{ \lambda^n: T^n \to U^n \} \), but will not verify all the things one must usually verify in proving such a theorem.

Suppose we have defined \(\lambda^0, \ldots, \lambda^{n-1} \), and we want to define \(\lambda^n(A): T^n(A) \to U^n(A) \). Let \(t \) be in \(T^n(A) \). Then, by our hypothesis, we have the exact sequence \(E_t: 0 \to M \to P \to A \to 0 \), and thus the diagram

\[
\begin{array}{ccc}
T^{n-1}(M) & \delta^{n-1}_E \longrightarrow & T^n(A) \longrightarrow & T^n(P) \\
\downarrow \lambda^{n-1}(M) & & \downarrow & \\
U^{n-1}(M) & \delta^{n-1}_E \longrightarrow & U^n(A)
\end{array}
\]

with top row exact. Since \(t \to 0 \), \(t = \delta^{n-1}_E(m) \) for some \(m \) in \(T^{n-1}(M) \). Define \(\lambda^n(A)(t) = \delta^{n-1}_E \lambda^{n-1}(M)(m) \).

To show that this definition is independent of the choice of \(m \) in \(T^{n-1}(M) \) is trivial. To show that it is independent of the choice of \(E_t \), one makes use of the fact that any two exact sequences in \(\mathcal{D}_\mathcal{A} \) are dominated by a third. The same device shows that \(\lambda^n \) is additive. All commutativity properties are equally easy to show.
PROPOSITION 4.3. Let \(\mathcal{A} \) be an exact category, let \(C \) be a fixed object of \(\mathcal{A} \), and let \(T(A) = \text{Hom}(A, C) \). Then the connected sequences of functors \(\{S^nT\} \) and \(\{\text{Ext}^n(A, C)\} \) are naturally equivalent (for definition of \(\text{Ext}^n(A, C) \), see [1]).

PROOF. We have already seen that \(\{S^nT\} \) is universal. Since \(\{\text{Ext}^n(A, C)\} \) is an exact connected sequence of functors, we will show that it is universal if we can show that the hypotheses of 4.2 apply.

Let \(t \) in \(\text{Ext}^n(A, C) \) be represented by
\[
0 \rightarrow C \rightarrow X_n \rightarrow \cdots \rightarrow X_1 \rightarrow A \rightarrow 0.
\]
Let \(E_t \) be the sequence \(0 \rightarrow M \rightarrow X_1 \rightarrow A \rightarrow 0 \), where \(M = \text{Ker} \tau \). Then clearly \(t \rightarrow 0 \) under the map \(\text{Ext}^n(A, C) \rightarrow \text{Ext}^n(X_1, C) \). Thus \(\{\text{Ext}^n(A, C)\} \) is universal and \(\text{Ext}^n(A, C) = \text{Hom}(A, C) = T(A) \). Hence we have our result (since two universal sequences of functors with the same initial functor are naturally equivalent).

We should remark that if we hold \(A \) fixed, and consider the functor \(U(C) = \text{Hom}(A, C) \), then the connected sequences of covariant functors \(\{S^nU\}, \{\text{Ext}^n(A, C)\} \) are naturally equivalent.

5. Applications

Let \(\mathcal{X} \) be a topological space, and let \(\mathcal{A} \) be the category of sheaves (of abelian groups) over \(\mathcal{X} \). Let \(\Phi \) be a family of paracompact supports as defined in [2] and let \(\Gamma_\Phi(F) \) be the functor which assigns to each sheaf \(F \) the group of sections of \(F \) with supports in \(\Phi \). Then we have

THEOREM 5.1. The connected sequences of (covariant) functors \(\{S^n\Gamma_\Phi(F)\} \) and \(\{H^\Phi_\mathcal{X}(F, F)\} \) are naturally isomorphic.

PROOF. Since \(S^n\Gamma_\Phi(F) = \Gamma_\Phi(F) = H^\Phi_\mathcal{X}(\mathcal{X}, F) \), and since \(\{S^n\Gamma_\Phi(F)\} \) is universal, it suffices to prove that \(\{H^\Phi_\mathcal{X}(\mathcal{X}, F)\} \) is universal. To do this, we must show that \(\{H^\Phi_\mathcal{X}\} \) satisfies the (dual of the) hypotheses of 4.2. However, we can show even more. For if \(F \) is a sheaf, and \(S_0 \) is the sheaf of zero-dimensional Alexander-Spanier cochains over \(\mathcal{X} \), then \(F \rightarrow F \otimes S_0 \) is a monomorphism, \(F \otimes S_0 \) is fine, and thus \(H^\Phi_\mathcal{X}(\mathcal{X}, F) \otimes S_0 = 0 \) for all \(n > 0 \). Thus \(\{H^\Phi_\mathcal{X}\} \) is universal, and we have our result.

Now let \(V \) be a projective variety, and let \(\mathcal{A} \) be the category of coherent algebraic sheaves over \(V \). Let \(T(C) \) be the functor \(\text{Hom}(\mathcal{O}, C) = \Gamma(C) \) where \(\mathcal{O} \) is the sheaf of local rings of \(V \).

THEOREM 5.2. The connected sequences of functors \(\{S^n\Gamma(C)\}, \{H^n(V, C)\}, \) and \(\{\text{Ext}^n(\mathcal{O}, C)\} \) are all naturally isomorphic.

PROOF. We have already seen in section 4 that \(\{S^n\Gamma\} \) and \(\{\text{Ext}^n(\mathcal{O}, C)\} \) are naturally isomorphic. Hence it will suffice to prove that \(\{H^n(V, C)\} \)
is universal.3 Let D be the divisor of hyperplane sections of V and let $D(q)$ be the qth multiple of D as defined in [5]. Let C be any coherent algebraic sheaf, and let $S(q)$ be the sheaf associated with $D(q)$ ($S(q)$ is coherent). Then the map $C \rightarrow C \otimes S(q)$ is a monomorphism, and $H^n(V, C \otimes S(q))$ is zero for all positive n if q is sufficiently large. Hence \{\text{Ext}^n(V, C)\} is universal, and we are done.

We should stress here that Ext$^n(\mathcal{O}, C)$ is defined in the category of coherent algebraic sheaves. Hence an element of Ext$^n(\mathcal{O}, C)$(or $H^n(V, C)$) can be represented by an n-fold extension

$$0 \longrightarrow C \longrightarrow X_n \longrightarrow \cdots \longrightarrow X_1 \longrightarrow \mathcal{O} \longrightarrow 0$$

of coherent sheaves.

We should also remark that if we let $U(A) = \text{Hom}(A, C)$, with C a fixed coherent sheaf, then $S^n U(A) = \text{Ext}^n(A, C)$. In particular, $S^n U(\mathcal{O}) = \text{Ext}^n(\mathcal{O}, C) = H^n(V, C)$ In section 1 we saw that $S^n U(\mathcal{O})$ could be computed as a direct limit of \{\text{Ext}^n(P)\} where

$$S^{n-1} U(P) \longrightarrow S^{n-1} U(M) \longrightarrow F_p \longrightarrow 0$$

is exact, coming from an exact sequence of coherent sheaves:

$$0 \longrightarrow M \longrightarrow P \longrightarrow \mathcal{O} \longrightarrow 0.$$

However, if we restrict ourselves to locally free sheaves P, we obtain a cofinal subset of $\mathcal{P}_\mathcal{O}$. Thus $\mathcal{P}_\mathcal{O}' = \{0 \rightarrow M \rightarrow P \rightarrow \mathcal{O} \rightarrow 0 | P$ locally free\} is an indexing set for defining $S^n U(0)$.

If one could show for an abstract variety V that $H^n(V, C)$ satisfies the relatively weak conditions of 4.2, we would again have $H^n(V, C) \cong \text{Ext}^n(\mathcal{O}, C)$.

Brown University

Bibliography

3 We want to thank E. Snapper for pointing out the universality of $H^n(V, C)$ for projective varieties V.