Representation theory of S_n via Okounkov-Vershik

Duncan Levear

October 2017
Motivation: symmetry

For any finite group G, a natural question is “what can G act on”? In other words, what structures respect the symmetry encoded by G? Put another way, we are looking for subgroups of matrices that perform as G would.

The question of enumerating such “G-like matrices” turns out to be an interesting question with beautiful answers. This talk answers the question for a superstar actor: S_n.
References and Acknowledgements

References and Acknowledgements

References and Acknowledgements

 arxiv.org/abs/math/0503040v3

- Omer Offen Reading Course Spring 2017
References and Acknowledgements

- Omer Offen Reading Course Spring 2017
Other paths to Representation Theory of S_n

The irreducible representations of S_n are called *Specht Modules*, and have already been constructed through other means:

The combinatorics of tableaux “should be deduced from the intrinsic structure of the symmetric groups.”
Motivation

Other paths to Representation Theory of S_n

The irreducible representations of S_n are called *Specht Modules*, and have already been constructed through other means:

- **The Combinatorics of Tableaux**
 - Certain subgroups corresponding to a tableau are used to create representations which turn out to be irreducible.

- **Schur-Weyl Duality**
 - Duality between S_n and $GL(N)$

Both rest upon “deep nontrivial auxiliary constructions”
Other paths to Representation Theory of S_n

The irreducible representations of S_n are called *Specht Modules*, and have already been constructed through other means:

- **The Combinatorics of Tableaux**
 - Certain subgroups corresponding to a tableau are used to create representations which turn out to be irreducible.

- **Schur-Weyl Duality**
 - Duality between S_n and $GL(N)$

Both rest upon “deep nontrivial auxiliary constructions”

Okounkov-Vershik Approach (1996)
Motivation

Other paths to Representation Theory of S_n

The irreducible representations of S_n are called *Specht Modules*, and have already been constructed through other means:

- The Combinatorics of Tableaux
 - Certain subgroups corresponding to a tableau are used to create representations which turn out to be irreducible.
- Schur-Weyl Duality
 - Duality between S_n and $GL(N)$

Both rest upon “deep nontrivial auxiliary constructions”

Okounkov-Vershik Approach (1996)

- Representation theory of S_n should be “inductive” i.e. using $S_{n-1} < S_n$
Motivation

Other paths to Representation Theory of S_n

The irreducible representations of S_n are called *Specht Modules*, and have already been constructed through other means:

- The Combinatorics of Tableaux
 - Certain subgroups corresponding to a tableau are used to create representations which turn out to be irreducible.

- Schur-Weyl Duality
 - Duality between S_n and $GL(N)$

Both rest upon “deep nontrivial auxiliary constructions”

Okounkov-Vershik Approach (1996)

- Representation theory of S_n should be “inductive” i.e. using $S_{n-1} < S_n$

- The combinatorics of tableaux “should be deduced from the intrinsic structure of the symmetric groups.”
Outline

1. General Representation Theory
 - Representations
 - Permutation representations
 - Group Algebra
 - Irreducibles
 -Multiplicity-free subgroups $H \triangleleft G$

2. $S_{n-1} \triangleleft S_n$ (multiplicity-free)
 - Symmetric Actions
 - Proof that $S_n \times S_{n-1} \curvearrowright S_n$ is symmetric
 - Equivalence to $S_n \times S_{n-1} \curvearrowright S_n$ symmetric action

3. Gelfand-Tsetlin Basis and YJM generators
 - Branching Graph
 - GZ-Algebra and equivalence
 - Generating set for GZ-Algebra
 - Basis Elements \leftrightarrow Eigenvalues
Outline for §1 General Representation Theory

1. General Representation Theory
 - Representations
 - Permutation representations
 - Group Algebra
 - Irreducibles
 - Multiplicity-free subgroups $H \triangleleft G$

2. $S_{n-1} \triangleleft S_n$ (multiplicity-free)

3. Gelfand-Tsetlin Basis and YJM generators
Representations Examples

Representations: G acting on a \mathbb{C}-vector space

1. $\rho_{\text{trivial}} : S_n \to \mathbb{C}$ sends $\pi \in S_n$ to 1
Representations Examples

Representations: \(G \) acting on a \(\mathbb{C} \)-vector space

1. \(\rho_{\text{trivial}} : S_n \rightarrow \mathbb{C} \) sends \(\pi \in S_n \) to 1
2. \(\rho_{\text{sgn}} : S_n \rightarrow \mathbb{C} \) sends \(\pi \in S_n \) to \(\text{sgn}(\pi) \)
Representations Examples

Representations: G acting on a \mathbb{C}-vector space

1. $\rho_{\text{trivial}} : S_n \to \mathbb{C}$ sends $\pi \in S_n$ to 1
2. $\rho_{\text{sgn}} : S_n \to \mathbb{C}$ sends $\pi \in S_n$ to $\text{sgn}(\pi)$
3. $\rho_{\text{perm}} : S_n \to GL(n)$ sends $\pi \in S_n$ to its permutation matrix
Representations Examples

Representations: G acting on a \mathbb{C}-vector space

1. $\rho_{\text{trivial}} : S_n \rightarrow \mathbb{C}$ sends $\pi \in S_n$ to 1
2. $\rho_{\text{sgn}} : S_n \rightarrow \mathbb{C}$ sends $\pi \in S_n$ to $\text{sgn}(\pi)$
3. $\rho_{\text{perm}} : S_n \rightarrow \text{GL}(n)$ sends $\pi \in S_n$ to its permutation matrix

Permutation representations: G acting on a basis X
Representations Examples

Representations: G acting on a \mathbb{C}-vector space

1. $\rho_{\text{trivial}} : S_n \to \mathbb{C}$ sends $\pi \in S_n$ to 1
2. $\rho_{\text{sgn}} : S_n \to \mathbb{C}$ sends $\pi \in S_n$ to $\text{sgn}(\pi)$
3. $\rho_{\text{perm}} : S_n \to GL(n)$ sends $\pi \in S_n$ to its permutation matrix

Permutation representations: G acting on a basis X

If $G \curvearrowright X$ then $L[X] := \text{Fun}(X)$ is a representation via $\rho_{L[X]} : G \to L[X]$ sends $g \in G$ to $(f \mapsto (x \mapsto f(g^{-1}x)))$.
Representations Examples

Representations: G acting on a \(\mathbb{C} \)-vector space

1. \(\rho_{\text{trivial}} : S_n \to \mathbb{C} \) sends \(\pi \in S_n \) to 1
2. \(\rho_{\text{sgn}} : S_n \to \mathbb{C} \) sends \(\pi \in S_n \) to \(\text{sgn}(\pi) \)
3. \(\rho_{\text{perm}} : S_n \to GL(n) \) sends \(\pi \in S_n \) to its permutation matrix

Permutation representations: G acting on a basis \(X \)

If \(G \curvearrowright X \) then \(L[X] := \text{Fun}(X) \) is a representation via \(\rho_{L[X]} : G \to L[X] \)

sends \(g \in G \) to \((f \mapsto (x \mapsto f(g^{-1}x)))\).

1. \(Z_n \curvearrowright [n] \) gives an \(n \)-dimensional representation of \(Z_n \).
2. \(S_n \curvearrowright [n] \) gives an \(n \)-dimensional representation of \(S_n \).
Representations Examples

Representations: G acting on a \mathbb{C}-vector space

1. $\rho_{\text{trivial}} : S_n \to \mathbb{C}$ sends $\pi \in S_n$ to 1
2. $\rho_{\text{sgn}} : S_n \to \mathbb{C}$ sends $\pi \in S_n$ to $\text{sgn}(\pi)$
3. $\rho_{\text{perm}} : S_n \to \text{GL}(n)$ sends $\pi \in S_n$ to its permutation matrix

Permutation representations: G acting on a basis X

If $G \curvearrowright X$ then $L[X] := \text{Fun}(X)$ is a representation via $\rho_{L[X]} : G \to L[X]$ sends $g \in G$ to $(f \mapsto (x \mapsto f(g^{-1}x)))$.

1. $Z_n \curvearrowright [n]$ gives an n-dimensional representation of Z_n.
2. $S_n \curvearrowright [n]$ gives an n-dimensional representation of S_n.
3. $S_n \curvearrowright P([n])$ gives a 2^n-dimensional representation of S_n.
General Representation Theory

Permutation representations

Representations Examples

Representations: G acting on a \mathbb{C}-vector space

1. $\rho_{\text{trivial}} : S_n \rightarrow \mathbb{C}$ sends $\pi \in S_n$ to 1
2. $\rho_{\text{sgn}} : S_n \rightarrow \mathbb{C}$ sends $\pi \in S_n$ to $\text{sgn}(\pi)$
3. $\rho_{\text{perm}} : S_n \rightarrow GL(n)$ sends $\pi \in S_n$ to its permutation matrix

Permutation representations: G acting on a basis X

If $G \acts X$ then $L[X] := \text{Fun}(X)$ is a representation via $\rho_{L[X]} : G \rightarrow L[X]$ sends $g \in G$ to $(f \mapsto (x \mapsto f(g^{-1}x)))$.

1. $Z_n \acts [n]$ gives an n-dimensional representation of Z_n.
2. $S_n \acts [n]$ gives an n-dimensional representation of S_n.
3. $S_n \acts P([n])$ gives a 2^n-dimensional representation of S_n.
4. $G \acts G$ (left-mult) gives a $|G|$-dimensional representation of G.
Representations Examples

Representations: G acting on a \mathbb{C}-vector space

1. $\rho_{\text{trivial}} : S_n \to \mathbb{C}$ sends $\pi \in S_n$ to 1
2. $\rho_{\text{sgn}} : S_n \to \mathbb{C}$ sends $\pi \in S_n$ to $\text{sgn}(\pi)$
3. $\rho_{\text{perm}} : S_n \to GL(n)$ sends $\pi \in S_n$ to its permutation matrix

Permutation representations: G acting on a basis X

If $G \rtimes X$ then $L[X] := \text{Fun}(X)$ is a representation via $\rho_{L[X]} : G \to L[X]$ sends $g \in G$ to $(f \mapsto (x \mapsto f(g^{-1}x)))$.

1. $Z_n \rtimes [n]$ gives an n-dimensional representation of Z_n.
2. $S_n \rtimes [n]$ gives an n-dimensional representation of S_n.
3. $S_n \rtimes P([n])$ gives a 2^n-dimensional representation of S_n.
4. $G \rtimes G$ (left-mult) gives a $|G|$-dimensional representation of G.

The representation from $G \rtimes G$ is denoted $L[G]$
Unlike most representations, the regular representation $L[G]$ is an algebra. In fact, every representation can be viewed as a module over $L[G]$:

Example

$\rho_{\text{perm}}((12) + 2(23)) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Remark: The center of $L[G]$ consists of central functions (those constant across conjugacy classes).
Unlike most representations, the regular representation $L[G]$ is an algebra. In fact, every representation can be viewed as a module over $L[G]$: For any representation $\rho : G \rightarrow Aut(V)$, the map $L[G] \rightarrow Aut(V)$ is also denoted by ρ, and $\rho(f)$ is called the Fourier Transform of f.

$$\rho(f) := \sum_{g \in G} f(g) \rho(g)$$
Unlike most representations, the regular representation $L[G]$ is an algebra. In fact, every representation can be viewed as a module over $L[G]$: For any representation $\rho : G \rightarrow \text{Aut}(V)$, the map $L[G] \rightarrow \text{Aut}(V)$ is also denoted by ρ, and $\rho(f)$ is called the Fourier Transform of f.

$$\rho(f) := \sum_{g \in G} f(g) \rho(g)$$

Example

$$\rho_{\text{perm}}((12) + 2(23)) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
Unlike most representations, the regular representation $L[G]$ is an algebra. In fact, every representation can be viewed as a module over $L[G]$: For any representation $\rho : G \to \operatorname{Aut}(V)$, the map $L[G] \to \operatorname{Aut}(V)$ is also denoted by ρ, and $\rho(f)$ is called the Fourier Transform of f.

$$\rho(f) := \sum_{g \in G} f(g) \rho(g)$$

Example

$$\rho_{\text{perm}}((12) + 2(23)) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Remark: The center of $L[G]$ consists of central functions (those constant across conjugacy classes).
Irreducible Representations

Definition: Irreducible representations are those without non-trivial sub-representations (i.e. no subspaces preserved by the action of G)
Irreducible Representations

Definition: Irreducible representations are those without non-trivial sub-representations (i.e. no subspaces preserved by the action of G)

Facts
Irreducible Representations

Definition: Irreducible representations are those without non-trivial sub-representations (i.e. no subspaces preserved by the action of G)

Facts

- The number of irreducible representations is the number of conjugacy classes of G
Irreducible Representations

Definition: Irreducible representations are those without non-trivial sub-representations (i.e. no subspaces preserved by the action of G)

Facts

- The number of irreducible representations is the number of conjugacy classes of G
- The sum of the squares of the dimension of each irreducible representation equals $|G|$
Irreducible Representations

Definition: Irreducible representations are those without non-trivial sub-representations (i.e. no subspaces preserved by the action of G)

Facts

- The number of irreducible representations is the number of conjugacy classes of G
- The sum of the squares of the dimension of each irreducible representation equals $|G|$
- There is an algebra isomorphism:

 $$L[G] \cong \bigoplus End(V_\rho)$$

 where the sum is over irreducible representations with respective vector spaces V_ρ. This isomorphism is also called the Fourier Transform map.
Irreducible Representations

Definition: Irreducible representations are those without non-trivial sub-representations (i.e. no subspaces preserved by the action of G)

Facts

- The number of irreducible representations is the number of conjugacy classes of G
- The sum of the squares of the dimension of each irreducible representation equals $|G|$
- There is an algebra isomorphism:

$$L[G] \cong \bigoplus \text{End}(V_\rho)$$

where the sum is over irreducible representations with respective vector spaces V_ρ. This isomorphism is also called the Fourier Transform map.
- If V_ρ and V_γ are irreducible and non-isomorphic, then $\text{Hom}_G(V_\rho, V_\gamma)$ is null. If they are isomorphic, the Hom-set is one-dimensional. (Schur’s Lemma)
Irreducible Representations

For any representation \((\gamma, W)\) of \(G\), it is either irreducible or \(W\) splits as a direct sum of sub-representations which are irreducible (Maschke’s Theorem).
Irreducible Representations

For any representation \((\gamma, W)\) of \(G\), it is either irreducible or \(W\) splits as a direct sum of sub-representations which are irreducible (Maschke’s Theorem). If \(V_\rho\) is an irreducible representation, the number of copies of \(V_\rho\) in that direct sum is called the \textit{multiplicity} of \(\rho\) in \((\gamma, W)\).
Irreducible Representations

For any representation \((\gamma, W)\) of \(G\), it is either irreducible or \(W\) splits as a direct sum of sub-representations which are irreducible (Maschke’s Theorem). If \(V_\rho\) is an irreducible representation, the number of copies of \(V_\rho\) in that direct sum is called the *multiplicity* of \(\rho\) in \((\gamma, W)\).

Examples

- \(\rho_{perm}\) splits into two distinct irreducible representations. (non-trivial)
Irreducible Representations

For any representation (γ, W) of G, it is either irreducible or W splits as a direct sum of sub-representations which are irreducible (Maschke’s Theorem). If V_ρ is an irreducible representation, the number of copies of V_ρ in that direct sum is called the multiplicity of ρ in (γ, W).

Examples

- ρ_{perm} splits into two distinct irreducible representations. (non-trivial)
- The decomposition of $L[G]$ includes all irreducible representations, with multiplicities being the dimension.
Irreducible Representations

For any representation \((\gamma, W)\) of \(G\), it is either irreducible or \(W\) splits as a direct sum of sub-representations which are irreducible (Maschke’s Theorem). If \(V_\rho\) is an irreducible representation, the number of copies of \(V_\rho\) in that direct sum is called the \textit{multiplicity} of \(\rho\) in \((\gamma, W)\).

Examples

- \(\rho_{\text{perm}}\) splits into two distinct irreducible representations. (non-trivial)
- The decomposition of \(L[G]\) includes all irreducible representations, with multiplicities being the dimension.
Irrep(S_3)

- (ρ_{triv}) Send all $\pi \in S_3$ to $1 \in \mathbb{C}^1$
Irrep(S_3)

- (ρ_{triv}) Send all $\pi \in S_3$ to $1 \in \mathbb{C}^1$
- (ρ_{sgn}) Send $\{(12), (23), (13)\}$ to -1 and the rest to 1.
Irrep(S_3)

- (ρ_{triv}) Send all $\pi \in S_3$ to $1 \in \mathbb{C}^1$
- (ρ_{sgn}) Send $\{(12), (23), (13)\}$ to -1 and the rest to 1.

\[
\begin{align*}
(12) & \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\
(13) & \mapsto \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix} \\
(23) & \mapsto \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \\
(123) & \mapsto \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \\
(132) & \mapsto \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}
\end{align*}
\]

ρ_{stan} comes from the quotient of ρ_{perm} by the subspace spanned by $(1,1,1)$.
Irrep(S_3)

- (ρ_{triv}) Send all $\pi \in S_3$ to $1 \in \mathbb{C}^1$
- (ρ_{sgn}) Send $\{(12), (23), (13)\}$ to -1 and the rest to 1.

\[
\begin{align*}
(12) & \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\
(13) & \mapsto \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix} \\
(23) & \mapsto \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \\
(123) & \mapsto \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \\
(132) & \mapsto \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}
\end{align*}
\]

ρ_{stan} comes from the quotient of ρ_{perm} by the subspace spanned by $(1,1,1)$.
Multiplicity-freeness

Multiplicity-free Representations
Multiplicity-freeness

Multiplicity-free Representations
If a representation of G splits into irreducibles with multiplicities ≤ 1, we say the representation is *multiplicity-free*.

- ρ_{perm} is multiplicity-free
Multiplicity-freeness

Multiplicity-free Representations

If a representation of G splits into irreducibles with multiplicities ≤ 1, we say the representation is *multiplicity-free*.

- ρ_{perm} is multiplicity-free
- $L[G]$ is not multiplicity-free
Multiplicity-freeness

Multiplicity-free Representations

If a representation of G splits into irreducibles with multiplicities ≤ 1, we say the representation is *multiplicity-free*.

- ρ_{perm} is multiplicity-free
- $L[G]$ is not multiplicity-free
- There are only finitely many multiplicity-free representations of G (they biject with subsets of $\text{Irrep}(G)$ by Schur’s Lemma).

Multiplicity-free Subgroups

A subgroup $H < G$ inherits any representations of G via restriction. If all irreducible reps of G restrict to multiplicity-free reps of H, we say $H < G$ and say H is a *multiplicity-free subgroup* of G.
Multiplicity-freeness

Multiplicity-free Representations
If a representation of G splits into irreducibles with multiplicities ≤ 1, we say the representation is *multiplicity-free*.

- ρ_{perm} is multiplicity-free
- $L[G]$ is not multiplicity-free
- There are only finitely many multiplicity-free representations of G (they biject with subsets of $\text{Irrep}(G)$ by Schur’s Lemma).

Multiplicity-free Subgroups
A subgroup $H < G$ inherits any representations of G via restriction. If all irreducible reps of G restrict to multiplicity-free reps of H, we say $H \triangleleft G$ and say H is a *multiplicity-free subgroup* of G.
Multiplicty-free subgroup examples

Which of these subgroups are multiplicity-free?

1Provided G_2 is not abelian
Multiplicity-free subgroup examples

Which of these subgroups are multiplicity-free?

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Group</th>
<th>Multiplicity-free?</th>
</tr>
</thead>
<tbody>
<tr>
<td>${e}$</td>
<td>\mathbb{Z}_n</td>
<td>yes</td>
</tr>
<tr>
<td>${e, (12)}$</td>
<td>S_3</td>
<td>no</td>
</tr>
<tr>
<td>${e, (12)}$</td>
<td>S_3</td>
<td>yes</td>
</tr>
<tr>
<td>${e}$</td>
<td>$S_n - 1$</td>
<td>yes</td>
</tr>
<tr>
<td>G_1</td>
<td>$G_1 \times G_2$</td>
<td>no</td>
</tr>
</tbody>
</table>

1 Provided G_2 is not abelian
Multiplicity-free subgroup examples

Which of these subgroups are multiplicity-free?

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Group</th>
<th>Multiplicity-free?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>\mathbb{Z}_n</td>
<td>yes</td>
</tr>
</tbody>
</table>

\(^1\text{Provided } G_2 \text{ is not abelian}\)
Which of these subgroups are multiplicity-free?

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Group</th>
<th>Multiplicity-free?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>\mathbb{Z}_n</td>
<td>yes</td>
</tr>
<tr>
<td>{e}</td>
<td>S_3</td>
<td>no</td>
</tr>
</tbody>
</table>

\footnote{Provided \(G_2 \) is not abelian}
Multiplicity-free subgroup examples

Which of these subgroups are multiplicity-free?

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Group</th>
<th>Multiplicity-free?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>\mathbb{Z}_n</td>
<td>yes</td>
</tr>
<tr>
<td>{e}</td>
<td>S_3</td>
<td>no</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>S_3</td>
<td>yes</td>
</tr>
</tbody>
</table>

1Provided \(G_2\) is not abelian
Multiplication-free subgroup examples

Which of these subgroups are multiplication-free?

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Group</th>
<th>Multiplicity-free?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>\mathbb{Z}_n</td>
<td>yes</td>
</tr>
<tr>
<td>{e}</td>
<td>S_3</td>
<td>no</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>S_3</td>
<td>yes</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>S_4</td>
<td>no</td>
</tr>
</tbody>
</table>

\[^1]\text{Provided } G_2 \text{ is not abelian}
Multiplicity-free subgroup examples

Which of these subgroups are multiplicity-free?

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Group</th>
<th>Multiplicity-free?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>\mathbb{Z}_n</td>
<td>yes</td>
</tr>
<tr>
<td>{e}</td>
<td>S_3</td>
<td>no</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>S_3</td>
<td>yes</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>S_4</td>
<td>no</td>
</tr>
<tr>
<td>\mathbb{Z}_n</td>
<td>\mathbb{Z}_{mn}</td>
<td>yes</td>
</tr>
</tbody>
</table>

\[1\] Provided \(G_2\) is not abelian
Multiplicity-free subgroup examples

Which of these subgroups are multiplicity-free?

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Group</th>
<th>Multiplicity-free?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>(\mathbb{Z}_n)</td>
<td>yes</td>
</tr>
<tr>
<td>{e}</td>
<td>(S_3)</td>
<td>no</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>(S_3)</td>
<td>yes</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>(S_4)</td>
<td>no</td>
</tr>
<tr>
<td>(\mathbb{Z}_n)</td>
<td>(\mathbb{Z}_{mn})</td>
<td>yes</td>
</tr>
<tr>
<td>(\mathbb{Z}_n)</td>
<td>(D_n)</td>
<td>no</td>
</tr>
</tbody>
</table>

\(^1\) Provided \(G_2\) is not abelian
Multiplicity-free subgroup examples

Which of these subgroups are multiplicity-free?

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Group</th>
<th>Multiplicity-free?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>(\mathbb{Z}_n)</td>
<td>yes</td>
</tr>
<tr>
<td>{e}</td>
<td>(S_3)</td>
<td>no</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>(S_3)</td>
<td>yes</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>(S_4)</td>
<td>no</td>
</tr>
<tr>
<td>(\mathbb{Z}_n)</td>
<td>(\mathbb{Z}_{mn})</td>
<td>yes</td>
</tr>
<tr>
<td>(\mathbb{Z}_n)</td>
<td>(D_n)</td>
<td>no</td>
</tr>
<tr>
<td>(G_1)</td>
<td>(G_1 \times G_2)</td>
<td>no(^1)</td>
</tr>
</tbody>
</table>

\(^1\)Provided \(G_2\) is not abelian
Multiplicity-free subgroup examples

Which of these subgroups are multiplicity-free?

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Group</th>
<th>Multiplicity-free?</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1}</td>
<td>(\mathbb{Z}_n)</td>
<td>yes</td>
</tr>
<tr>
<td>{e}</td>
<td>(S_3)</td>
<td>no</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>(S_3)</td>
<td>yes</td>
</tr>
<tr>
<td>{e, (12)}</td>
<td>(S_4)</td>
<td>no</td>
</tr>
<tr>
<td>(\mathbb{Z}_n)</td>
<td>(\mathbb{Z}_{mn})</td>
<td>yes</td>
</tr>
<tr>
<td>(\mathbb{Z}_n)</td>
<td>(D_n)</td>
<td>no</td>
</tr>
<tr>
<td>(G_1)</td>
<td>(G_1 \times G_2)</td>
<td>no(^1)</td>
</tr>
<tr>
<td>(S_{n-1})</td>
<td>(S_n)</td>
<td>yes</td>
</tr>
</tbody>
</table>

\(^1\)Provided \(G_2\) is not abelian
Outline for §2 \(S_{n-1} \triangleleft S_n \) (multiplicity-free)

1. General Representation Theory

2. \(S_{n-1} \triangleleft S_n \) (multiplicity-free)
 - Symmetric Actions
 - Proof that \(S_n \times S_{n-1} \curvearrowright S_n \) is symmetric
 - Equivalence to \(S_n \times S_{n-1} \curvearrowright S_n \) symmetric action

3. Gelfand-Tsetlin Basis and YJM generators
Outline of proof $S_{n-1} \preceq S_n$
Outline of proof $S_{n-1} \preccurlyeq S_n$

This proof is due to Ceccherini et al. The proof consists of three steps (all surprising)
Outline of proof $S_{n-1} \lhd S_n$

This proof is due to Ceccherini et al. The proof consists of three steps (all surprising)

1. If $G \acts X$ is a symmetric action then $L[X]$ is a multiplicity-free rep of G.
Outline of proof $S_{n-1} \preceq S_n$

This proof is due to Ceccherini et al. The proof consists of three steps (all surprising)

1. If $G \curvearrowright X$ is a symmetric action then $L[X]$ is a multiplicity-free rep of G.

2. $S_n \times S_{n-1} \curvearrowright S_n$ is a symmetric action, so $L[S_n]$ is a multiplicity-free rep of $S_{n-1} \times S_n$.
Outline of proof $S_{n-1} \triangleleft S_n$

This proof is due to Ceccherini et al. The proof consists of three steps (all surprising)

1. If $G \actson X$ is a symmetric action then $L[X]$ is a multiplicity-free rep of G.
2. $S_n \times S_{n-1} \actson S_n$ is a symmetric action, so $L[S_n]$ is a multiplicity-free rep of $S_{n-1} \times S_n$.
3. $L[S_n]$ is a multiplicity-free rep of $S_n \times S_{n-1}$ implies $S_{n-1} \triangleleft S_n$
Outline of proof $S_{n-1} \preccurlyeq S_n$

This proof is due to Ceccherini et al. The proof consists of three steps (all surprising)

1. If $G \curvearrowright X$ is a symmetric action then $L[X]$ is a multiplicity-free rep of G.

2. $S_n \times S_{n-1} \curvearrowright S_n$ is a symmetric action, so $L[S_n]$ is a multiplicity-free rep of $S_{n-1} \times S_n$.

3. $L[S_n]$ is a multiplicity-free rep of $S_n \times S_{n-1}$ implies $S_{n-1} \preccurlyeq S_n$
Symmetric Action Examples

Definition

A transitive action \(G \curvearrowright X \) is called *symmetric* if the induced action \(G \curvearrowright X \times X \) has orbits symmetric in the two coordinates.

I.e. for all \((x, y) \in X \times X\) there exists \(g \in G\) such that \((gx, gy) = (y, x)\).
Symmetric Action Examples

Definition
A transitive action $G \acts X$ is called symmetric if the induced action $G \acts X \times X$ has orbits symmetric in the two coordinates. I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

$\mathbb{Z}_6 \acts [6]$
Symmetric Action Examples

Definition

A transitive action $G \curvearrowright X$ is called *symmetric* if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates.

I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

\[Z_6 \curvearrowright [6] \]

Symmetric Action Examples

Definition

A transitive action $G \actson X$ is called *symmetric* if the induced action $G \actson X \times X$ has orbits symmetric in the two coordinates. I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.
Symmetric Action Examples

Definition

A transitive action $G \curvearrowright X$ is called symmetric if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates. I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

\[Z_6 \curvearrowright [6] \]

\[S_6 \curvearrowright [6] \]
Symmetric Action Examples

Definition

A transitive action $G \curvearrowright X$ is called symmetric if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates. I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

$Z_6 \curvearrowright [6]$

$Z_6 \curvearrowright [6] \times [6]$

$S_6 \curvearrowright [6]$

$S_6 \curvearrowright [6] \times [6]$
Symmetric Action Examples

Definition

A transitive action \(G \curvearrowright X \) is called *symmetric* if the induced action \(G \curvearrowright X \times X \) has orbits symmetric in the two coordinates.

I.e. for all \((x, y) \in X \times X\) there exists \(g \in G\) such that \((gx, gy) = (y, x)\).

\(^2\)Consider (1234) and (1423)
Symmetric Action Examples

Definition

A transitive action $G \curvearrowright X$ is called \textit{symmetric} if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates. I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

- $Z_n \curvearrowright [n]$ is \textit{not} symmetric.

\footnote{Consider (1234) and (1423)}
Symmetric Action Examples

Definition

A transitive action $G \curvearrowright X$ is called symmetric if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates. I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

- $\mathbb{Z}_n \curvearrowright [n]$ is not symmetric.
- $S_n \curvearrowright [n]$ is symmetric (in fact, doubly transitive)

\(^2\)Consider (1234) and (1423)
Symmetric Action Examples

Definition

A transitive action $G \curvearrowright X$ is called symmetric if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates.

I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

- $\mathbb{Z}_n \curvearrowright [n]$ is not symmetric.
- $S_n \curvearrowright [n]$ is symmetric (in fact, doubly transitive)
- $S_n \curvearrowright \{a conjugacy class\}$ is not symmetric.\(^2\)

\(^2\)Consider (1234) and (1423)
Symmetric Action Examples

Definition
A transitive action $G \curvearrowright X$ is called symmetric if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates.

I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

- $\mathbb{Z}_n \curvearrowright [n]$ is not symmetric.
- $S_n \curvearrowright [n]$ is symmetric (in fact, doubly transitive)
- $S_n \curvearrowright \{\text{a conjugacy class}\}$ is not symmetric.\(^2\)
- $S_n \curvearrowright P([n])$ is not even transitive. But the induced actions on orbits (k-element subsets) are symmetric.

\(^2\)Consider (1234) and (1423)
Symmetric Action Examples

Definition

A transitive action $G \acts X$ is called **symmetric** if the induced action $G \acts X \times X$ has orbits symmetric in the two coordinates.

I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

- $\mathbb{Z}_n \acts [n]$ is **not** symmetric.
- $S_n \acts [n]$ is symmetric (in fact, doubly transitive)
- $S_n \acts \{a$ conjugacy class$\}$ is **not** symmetric.2
- $S_n \acts P([n])$ is not even transitive. But the induced actions on orbits (k-element subsets) are symmetric.

2Consider (1234) and (1423)
Significance of $G \curvearrowright X$ symmetric

Definition

A transitive action $G \curvearrowright X$ is called symmetric if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates. I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.
Significance of $G \curvearrowright X$ symmetric

Definition

A transitive action $G \curvearrowright X$ is called *symmetric* if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates. I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

Claim: If $G \curvearrowright X$ is symmetric, then $\text{End}_G(L[X])$ is commutative.
Significance of $G \curvearrowright X$ symmetric

Definition

A transitive action $G \curvearrowright X$ is called *symmetric* if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates. I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

Claim: If $G \curvearrowright X$ is symmetric, then $\text{End}_G(L[X])$ is commutative.

Proof: An element of $\text{End}_G(L[X])$ is a square matrix indexed by X which has the same entries across G-orbits. By the symmetric action, every such matrix is symmetric, and therefore they commute (symmetric matrices commute).
Significance of $G \curvearrowright X$ symmetric

Definition

A transitive action $G \curvearrowright X$ is called *symmetric* if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates. I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

Claim: If $G \curvearrowright X$ is symmetric, then $\text{End}_G(L[X])$ is commutative.

Proof: An element of $\text{End}_G(L[X])$ is a square matrix indexed by X which has the same entries across G-orbits. By the symmetric action, every such matrix is symmetric, and therefore they commute (symmetric matrices commute).

Corollary: Therefore $L[X]$ is multiplicity-free.
Significance of $G \curvearrowright X$ symmetric

Definition

A transitive action $G \curvearrowright X$ is called symmetric if the induced action $G \curvearrowright X \times X$ has orbits symmetric in the two coordinates.

I.e. for all $(x, y) \in X \times X$ there exists $g \in G$ such that $(gx, gy) = (y, x)$.

Claim: If $G \curvearrowright X$ is symmetric, then $\text{End}_G(L[X])$ is commutative.

Proof: An element of $\text{End}_G(L[X])$ is a square matrix indexed by X which has the same entries across G-orbits. By the symmetric action, every such matrix is symmetric, and therefore they commute (symmetric matrices commute).

Corollary: Therefore $L[X]$ is multiplicity-free.

Proof: Schur’s Lemma
Proof that $S_n \times S_{n-1} \curvearrowright S_n$ is symmetric

Claim: This action is symmetric

Proof: Unpacking the definition results in trying to solve these simultaneous equations:

1. $\sigma \pi_1 \upsilon^{-1} = \pi_2$ (1)
2. $\sigma \pi_2 \upsilon^{-1} = \pi_1$ (2)

Each equation has $|S_n| - 1$ degrees of freedom (υ is free), and there is a simultaneous solution by a conjugacy fact: (It is equivalent to finding $\upsilon \in S_{n-1}$ such that $\pi_2^{-1} \pi_1 = \upsilon \pi_2^{-1} \upsilon$, which is always solvable because you can conjugate any element of S_n to its inverse by an element of S_{n-1}.)
$S_n \times S_{n-1} \curvearrowright S_n$ is symmetric

The action is $(\sigma, \upsilon) \cdot \pi := \sigma \pi \upsilon^{-1}$

Claim: This action is symmetric
$S_n \times S_{n-1} \curvearrowright S_n$ is symmetric

The action is $(\sigma, \nu) \cdot \pi := \sigma \pi \nu^{-1}$

Claim: This action is symmetric

Proof: Unpacking the definition results in trying to solve these simultaneous equations:

given $\pi_1, \pi_2 \in S_n$ find $\sigma \in S_n$ and $\nu \in S_{n-1}$ such that

\[\sigma \pi_1 \nu^{-1} = \pi_2 \]
\[\sigma \pi_2 \nu^{-1} = \pi_1 \]
$S_n \times S_{n-1} \curvearrowright S_n$ is symmetric

The action is $(\sigma, \nu) \cdot \pi := \sigma \pi \nu^{-1}$

Claim: This action is symmetric

Proof: Unpacking the definition results in trying to solve these simultaneous equations:

given $\pi_1, \pi_2 \in S_n$ find $\sigma \in S_n$ and $\nu \in S_{n-1}$ such that

\begin{align*}
\sigma \pi_1 \nu^{-1} &= \pi_2 \\
\sigma \pi_2 \nu^{-1} &= \pi_1
\end{align*}

(1) (2)

Each equation has $|S_{n-1}|$ degrees of freedom (ν is free), and there is a simultaneous solution by a conjugacy fact:

(It is equivalent to finding $\nu \in S_{n-1}$ such that $\pi_2^{-1} \pi_1 = \nu \pi_1^{-1} \pi_2 \nu^{-1}$, which is always solvable because you can conjugate any element of S_n to its inverse by an element of S_{n-1}).
$L[S_n]$ is multiplicity-free rep of $S_n \times S_{n-1}$ means...

3. The irreducible representations of a product of groups are completely given by tensor products of the irreducibles of the individual groups.

4. The dual of an irreducible representation is also irreducible.
$L[S_n]$ is multiplicity-free rep of $S_n \times S_{n-1}$ means...

It turns out that the decomposition of this permutation rep of $S_n \times S_{n-1}$ into tensor products tells you exactly how the to decompose the restricted reps of S_n.

3 The irreducible representations of a product of groups are completely given by tensor products of the irreducibles of the individual groups.

4 The dual of an irreducible representation is also irreducible.
$L[S_n]$ is multiplicity-free rep of $S_n \times S_{n-1}$ means...

It turns out that the decomposition of this permutation rep of $S_n \times S_{n-1}$ into tensor products tells you exactly how the to decompose the restricted reps of S_n.

In formulas, if $H < G$ with this permutation rep of $G \times H$ on $L[G]$ denoted by η, then for any $\sigma \in Irrep(G)$ and $\rho \in Irrep(H)$ there is an isomorphism of vector spaces

$$\text{Hom}_H(\rho, \text{Res}_H^G \sigma^{'}) \cong \text{Hom}_{G \times H}(\sigma \boxtimes \rho, \eta)$$

The map is $T \mapsto (v \otimes w \mapsto (g \mapsto (T(v)(\sigma(g^{-1})w))))$

3 The irreducible representations of a product of groups are completely given by tensor products of the irreducibles of the individual groups.

4 The dual of an irreducible representation is also irreducible.
L[S_n] is multiplicity-free rep of S_{n} \times S_{n-1} means...

It turns out that the decomposition of this permutation rep of $S_{n} \times S_{n-1}$ into tensor products tells you exactly how the to decompose the restricted reps of S_{n}. In formulas, if $H < G$ with this permutation rep of $G \times H$ on $L[G]$ denoted by η, then for any $\sigma \in \text{Irrep}(G)$ and $\rho \in \text{Irrep}(H)$ there is an isomorphism of vector spaces

$$\text{Hom}_H(\rho, \text{Res}_H^G \sigma) \cong \text{Hom}_{G \times H}(\sigma \boxtimes \rho, \eta)$$

The map is $T \mapsto (v \otimes w \mapsto (g \mapsto (T(v)(\sigma(g^{-1})w))))$

Corollary If η is multiplicity-free, then $H < G$ (by facts34)

3The irreducible representations of a product of groups are completely given by tensor products of the irreducibles of the individual groups.

4The dual of an irreducible representation is also irreducible.
$L[S_n]$ is multiplicity-free rep of $S_n \times S_{n-1}$ means...

It turns out that the decomposition of this permutation rep of $S_n \times S_{n-1}$ into tensor products tells you exactly how the to decompose the restricted reps of S_n.

In formulas, if $H \triangleleft G$ with this permutation rep of $G \times H$ on $L[G]$ denoted by η, then for any $\sigma \in \text{Irrep}(G)$ and $\rho \in \text{Irrep}(H)$ there is an isomorphism of vector spaces

$$\text{Hom}_H(\rho, \text{Res}_H^G \sigma') \cong \text{Hom}_{G \times H}(\sigma \boxtimes \rho, \eta)$$

The map is $T \mapsto (v \otimes w \mapsto (g \mapsto (T(v)(\sigma(g^{-1})w))))$

Corollary If η is multiplicity-free, then $H \triangleleft G$ (by facts\(^3\))
This completes our argument $S_{n-1} \triangleleft S_n$

\(^3\)The irreducible representations of a product of groups are completely given by tensor products of the irreducibles of the individual groups.

\(^4\)The dual of an irreducible representation is also irreducible.
Outline for §3 Gelfand-Tsetlin Basis and YJM generators

1. General Representation Theory

2. $S_{n-1} \triangleleft S_n$ (multiplicity-free)

3. Gelfand-Tsetlin Basis and YJM generators
 - Branching Graph
 - GZ-Algebra and equivalence
 - Generating set for GZ-Algebra
 - Basis Elements ↔ Eigenvalues
Given n, consider the directed graph with vertex set the irreducibles of S_i for $i = 1, \ldots, n$ and an edge goes from a rep of S_{i+1} to one of S_i if the target appears in the restriction of the source.
Branching Graph

Given n, consider the directed graph with vertex set the irreducibles of S_i for $i = 1, \ldots, n$ and an edge goes from a rep of S_{i+1} to one of S_i if the target appears in the restriction of the source.

This “works” because $S_{n-1} \preceq S_n$.
Branching Graph

Given \(n \), consider the directed graph with vertex set the irreducibles of \(S_i \) for \(i = 1, \ldots, n \) and an edge goes from a rep of \(S_{i+1} \) to one of \(S_i \) if the target appears in the restriction of the source.

This “works” because \(S_{n-1} \preceq S_n \). In particular, each path between two vertices corresponds to an appearance of one in the restriction of the other.
Branching Graph

Given n, consider the directed graph with vertex set the irreducibles of S_i for $i = 1, \ldots, n$ and an edge goes from a rep of S_{i+1} to one of S_i if the target appears in the restriction of the source.

This “works” because $S_{n-1} \leq S_n$. In particular, each path between two vertices corresponds to an appearance of one in the restriction of the other.

Gelfand-Tsetlin basis

Using the branching graph, we canonically deconstruct each irreducible rep of S_n into one-dimensional subspaces (sub-representations). Choosing a vector from each such subspace (not canonical) defines a basis called the GT basis. (They form a basis by the direct sum decomposition)
Branching Graph

Given \(n \), consider the directed graph with vertex set the irreducibles of \(S_i \) for \(i = 1, \ldots, n \) and an edge goes from a rep of \(S_{i+1} \) to one of \(S_i \) if the target appears in the restriction of the source.

This “works” because \(S_{n-1} \triangleleft S_n \). In particular, each path between two vertices corresponds to an appearance of one in the restriction of the other.

Gelfand-Tsetlin basis

Using the branching graph, we canonically deconstruct each irreducible rep of \(S_n \) into one-dimensional subspaces (sub-representations). Choosing a vector from each such subspace (not canonical) defines a basis called the GT basis. (They form a basis by the direct sum decomposition)

Remark: “The GT basis” refers to many different bases; one for each irreducible rep of \(S_n \).
Branching Graph

Given \(n \), consider the directed graph with vertex set the irreducibles of \(S_i \) for \(i = 1, \ldots, n \) and an edge goes from a rep of \(S_{i+1} \) to one of \(S_i \) if the target appears in the restriction of the source.

This “works” because \(S_{n-1} \preceq S_n \). In particular, each path between two vertices corresponds to an appearance of one in the restriction of the other.

Gelfand-Tsetlin basis

Using the branching graph, we canonically deconstruct each irreducible rep of \(S_n \) into one-dimensional subspaces (sub-representations). Choosing a vector from each such subspace (not canonical) defines a basis called the GT basis. (They form a basis by the direct sum decomposition)

Remark: “The GT basis” refers to many different bases; one for each irreducible rep of \(S_n \). The number of basis vectors is the number of paths from that rep to the “root” of the graph (the trivial representation of \(S_1 \)).
Branching Graph

Given n, consider the directed graph with vertex set the irreducibles of S_i for $i = 1, \ldots, n$ and an edge goes from a rep of S_{i+1} to one of S_i if the target appears in the restriction of the source.

This “works” because $S_{n-1} \triangleleft S_n$. In particular, each path between two vertices corresponds to an appearance of one in the restriction of the other.

Gelfand-Tsetlin basis

Using the branching graph, we canonically deconstruct each irreducible rep of S_n into one-dimensional subspaces (sub-representations). Choosing a vector from each such subspace (not canonical) defines a basis called the GT basis. (They form a basis by the direct sum decomposition)

Remark: “The GT basis” refers to many different bases; one for each irreducible rep of S_n. The number of basis vectors is the number of paths from that rep to the “root” of the graph (the trivial representation of S_1). This number is therefore the dimension.
Example: Branching graph of S_4
GZ-Algebra

Definition

\[GZ(n) := \{ f \in L[S_n] \mid \text{all Fourier Transforms of } f \text{ are diagonal in GT bases} \} \]
GZ-Algebra

Definition

\[GZ(n) := \{ f \in L[S_n] \mid \text{all Fourier Transforms of } f \text{ are diagonal in GT bases} \} \]

In other words, \(GZ(n) \) is the pullback of diagonal operators (in GT basis) through the isomorphism

\[L[S_n] \cong \bigoplus \text{End}(V_\rho) \]
GZ-Algebra

Definition

\[GZ(n) := \{ f \in L[S_n] \mid \text{all Fourier Transforms of } f \text{ are diagonal in GT bases} \} \]

In other words, \(GZ(n) \) is the pullback of diagonal operators (in GT basis) through the isomorphism

\[L[S_n] \cong \bigoplus \text{End}(V_\rho) \]

\(GZ(n) \) is a commutative sub-algebra of \(L[S_n] \), and represents those elements of the group algebra who “play well” with the GT basis. In particular, those operators with the GT basis as eigenvectors.
GZ-Algebra

Definition

$$GZ(n) := \{ f \in L[S_n] \mid \text{all Fourier Transforms of } f \text{ are diagonal in GT bases} \}$$

In other words, $GZ(n)$ is the pullback of diagonal operators (in GT basis) through the isomorphism

$$L[S_n] \cong \bigoplus \text{End}(V_\rho)$$

$GZ(n)$ is a commutative sub-algebra of $L[S_n]$, and represents those elements of the group algebra who “play well” with the GT basis. In particular, those operators with the GT basis as eigenvectors.
GZ-Algebra

\[
GZ(n) := \{ f \in L[S_n] \mid \text{all Fourier Transforms of } f \text{ are diagonal in GT bases} \}
\]

Surprising Theorem

\(^5\text{RHS} \subset \text{LHS}: \text{The Fourier Transform distributes over an element of RHS, and } \rho(\text{central}) \text{ is always a scalar. Normally that is not enough, because the } Z(i) \text{ are not nested, but the inductive basis solves this problem. For the reverse, construct a naïve basis for RHS as convolutions of elements of } GZ(n).} \)
GZ-Algebra

\[GZ(n) := \{ f \in L[S_n] \mid \text{all Fourier Transforms of } f \text{ are diagonal in GT bases} \} \]

Surprising Theorem

If \(Z(n) := Z(L[S_n]) \), then considering all \(Z(i) \) as sub-algebras of \(L[S_n] \), we have

\[GZ(n) = \langle Z(1), \ldots, Z(n) \rangle \]

\footnote{\text{RHS} \subset \text{LHS}: \text{The Fourier Transform distributes over an element of RHS, and } \rho(\text{central}) \text{ is always a scalar. Normally that is not enough, because the } Z(i) \text{ are not nested, but the inductive basis solves this problem. For the reverse, construct a naïve basis for RHS as convolutions of elements of } GZ(n).}
GZ-Algebra

\[
GZ(n) := \{ f \in L[S_n] \mid \text{all Fourier Transforms of } f \text{ are diagonal in GT bases} \}
\]

Surprising Theorem

If \(Z(n) := Z(L[S_n]) \), then considering all \(Z(i) \) as sub-algebrae of \(L[S_n] \), we have

\[
GZ(n) = \langle Z(1), \ldots, Z(n) \rangle
\]

Proof: Omitted, but this only works for the GT basis!\(^5\)

\(^5\) RHS \(\subset \) LHS: The Fourier Transform distributes over an element of RHS, and \(\rho(\text{central}) \) is always a scalar. Normally that is not enough, because the \(Z(i) \) are not nested, but the inductive basis solves this problem. For the reverse, construct a naïve basis for RHS as convolutions of elements of \(GZ(n) \).
Generating set

Surprising Theorem

\{\text{operators who like GT basis}\} = \langle Z(1), \ldots, Z(n) \rangle
Surprising Theorem

\[\{ \text{operators who like GT basis} \} = \langle Z(1), \ldots, Z(n) \rangle \]

What does RHS look like as a subset of \(L[S_n] \)? Polynomials in all conjugacy classes, including lower conjugacy classes.
Generating set

Surprising Theorem

\[\{ \text{operators who like GT basis} \} = \langle Z(1), \ldots, Z(n) \rangle \]

What does RHS look like as a subset of \(L[S_n] \)? Polynomials in all conjugacy classes, including lower conjugacy classes.

Example \(n = 4 \)
Generating set

Surprising Theorem

$$\{\text{operators who like GT basis}\} = < Z(1), \ldots, Z(n) >$$

What does RHS look like as a subset of $L[S_n]$? Polynomials in all conjugacy classes, including lower conjugacy classes.

Example $n = 4$

RHS is generated by:

- 0
Generating set

Surprising Theorem

$$\{\text{operators who like GT basis}\} = \langle Z(1), \ldots, Z(n) \rangle$$

What does RHS look like as a subset of $L[S_n]$? Polynomials in all conjugacy classes, including lower conjugacy classes.

Example $n = 4$

RHS is generated by:

- 0
- ()

...
Generating set

Surprising Theorem

\{\text{operators who like GT basis}\} = \langle Z(1), \ldots, Z(n) \rangle

What does RHS look like as a subset of $L[S_n]$? Polynomials in all conjugacy classes, including lower conjugacy classes.

Example $n = 4$

RHS is generated by:

- 0
- ()
- (12)
- (12) + (23) + (13)
- (123) + (132)
Generating set

Surprising Theorem

\[\{ \text{operators who like GT basis} \} = \langle Z(1), \ldots, Z(n) \rangle \]

What does RHS look like as a subset of \(L[S_n] \)? Polynomials in all conjugacy classes, including lower conjugacy classes.

Example \(n = 4 \)

RHS is generated by:

- 0
- ()
- (12)
- (12) + (23) + (13)
- (123) + (132)
- (12) + (23) + (14) + (24) + (34)
- (12)(34) + (13)(24) + (14)(23)
- (123) + (132) + (234) + (243) + (341) + (314) + (412) + (421)
- (1234) + (1243) + (1324) + (1342) + (1423) + (1432) + (1234) + (1243) + (1324) + (1342) + (1423) + (1432)
Generating set

Surprising Theorem

\[\{ \text{operators who like GT basis} \} = \langle Z(1), \ldots, Z(n) \rangle \]

What does RHS look like as a subset of \(L[S_n] \)? Polynomials in all conjugacy classes, including lower conjugacy classes.

Example \(n = 4 \)

RHS is generated by:

- \(0 \)
- \(() \)
- \((12) \)
- \((12) + (23) + (13) \)
- \((12) + (23) + (13) + (14) + (24) + (34) \)
- \((12)(34) + (13)(24) + (14)(23) \)
- \((123) + (132) + (234) + (243) + (341) + (314) + (412) + (421) \)
- \((1234) + (1243) + (1324) + (1342) + (1423) + (1432) \)

Is there a “smarter” generating set? I.e. is there redundancy among these conjugacy classes?
Generating set for GZ Algebra

Lynchpin Theorem (Okounkov-Vershik '04)
Generating set for GZ Algebra

Lynchpin Theorem (Okounkov-Vershik ’04)

The GZ Algebra $\langle Z(1), \ldots, Z(n) \rangle$ is generated by the elements X_i for $i = 1, \ldots, n$ where

$$X_i := (1i) + (2i) + \cdots + (i - 1, i)$$

In other words, every S_n conjugacy class can be built from lower ones with the “new transpositions” (the X_i are called Young-Jucys-Murphy elements; $X_1 = 0$, $X_2 = (12)$, etc.).
Generating set for GZ Algebra

Lynchpin Theorem (Okounkov-Vershik ’04)

The GZ Algebra $\langle Z(1), \ldots, Z(n) \rangle$ is generated by the elements X_i for $i = 1, \ldots, n$ where

$$X_i := (1i) + (2i) + \cdots + (i - 1, i)$$

In other words, every S_n conjugacy class can be built from lower ones with the “new transpositions” (the X_i are called Young-Jucys-Murphy elements; $X_1 = 0$, $X_2 = (12)$, etc.).

Proof:

Obtain k-cycles: use induction and multiply all $k-1$ cycles by X_n. You get what you want, plus an extra term with two cycles. Use a “lower-terms” argument to cancel the extra term.

Once you have all k-cycles, multiply them together and use a “lower-terms” argument to get an arbitrary class. This last step turns out to be exactly the statement that power sum symmetric functions form a multiplicative basis.

Sage example for $n = 4$.
Generating set for GZ Algebra

Lynchpin Theorem (Okounkov-Vershik ’04)

The GZ Algebra $< Z(1), \ldots, Z(n) >$ is generated by the elements X_i for $i = 1, \ldots, n$ where

$$X_i := (1i) + (2i) + \cdots + (i - 1, i)$$

In other words, every S_n conjugacy class can be built from lower ones with the “new transpositions” (the X_i are called Young-Jucys-Murphy elements; $X_1 = 0$, $X_2 = (12)$, etc.).

Proof:

1. Obtain k-cycles: use induction and multiply all $k - 1$ cycles by X_n. You get what you want, plus an extra term with two cycles. Use a “lower-terms” argument to cancel the extra term.
Generating set for GZ Algebra

Lynchpin Theorem (Okounkov-Vershik ’04)

The GZ Algebra $< Z(1), \ldots, Z(n) >$ is generated by the elements X_i for $i = 1, \ldots, n$ where

$$X_i := (1i) + (2i) + \cdots + (i-1, i)$$

In other words, every S_n conjugacy class can be built from lower ones with the “new transpositions” (the X_i are called Young-Jucys-Murphy elements; $X_1 = 0$, $X_2 = (12)$, etc.).

Proof:

1. Obtain k-cycles: use induction and multiply all $k-1$ cycles by X_n. You get what you want, plus an extra term with two cycles. Use a “lower-terms” argument to cancel the extra term.

2. Once you have all k-cycles, multiply them together and use a “lower-terms” argument to get an arbitrary class.
Lynchpin Theorem (Okounkov-Vershik ’04)

The GZ Algebra \(< Z(1), \ldots, Z(n) >\) is generated by the elements \(X_i\) for \(i = 1, \ldots, n\) where

\[
X_i := (1i) + (2i) + \cdots + (i-1, i)
\]

In other words, every \(S_n\) conjugacy class can be built \(L[S_n]\) from lower ones with the “new transpositions” (the \(X_i\) are called Young-Jucys-Murphy elements; \(X_1 = 0, X_2 = (12), \text{etc.}\)).

Proof:

1. Obtain \(k\)-cycles: use induction and multiply all \(k-1\) cycles by \(X_n\). You get what you want, plus an extra term with two cycles. Use a “lower-terms” argument to cancel the extra term.

2. Once you have all \(k\)-cycles, multiply them together and use a “lower-terms” argument to get an arbitrary class.

This last step turns out to be exactly the statement that power sum symmetric functions form a multiplicative basis.
Generating set for GZ Algebra

Lynchpin Theorem (Okounkov-Vershik ’04)

The GZ Algebra \(\langle Z(1), \ldots, Z(n) \rangle \) is generated by the elements \(X_i \) for \(i = 1, \ldots, n \) where

\[
X_i := (1i) + (2i) + \cdots + (i-1, i)
\]

In other words, every \(S_n \) conjugacy class can be built \(L[S_n] \) from lower ones with the “new transpositions” (the \(X_i \) are called Young-Jucys-Murphy elements; \(X_1 = 0 \), \(X_2 = (12) \), etc.).

Proof:

1. Obtain \(k \)-cycles: use induction and multiply all \(k - 1 \) cycles by \(X_n \). You get what you want, plus an extra term with two cycles. Use a “lower-terms” argument to cancel the extra term.

2. Once you have all \(k \)-cycles, multiply them together and use a “lower-terms” argument to get an arbitrary class.

This last step turns out to be exactly the statement that power sum symmetric functions form a multiplicative basis. Sage example for \(n = 4 \).
Eigenvalues for the generators

Lynchpin Theorem (Okounkov-Vershik ’04)

The GZ Algebra $\langle Z(1), \ldots, Z(n) \rangle$ is generated by the elements X_i for $i = 1, \ldots, n$ where

$$X_i := (1i) + (2i) + \cdots + (i-1, i)$$

In other words, every S_n conjugacy class can be built from lower ones with the “new transpositions” (the X_i are called Young-Jucys-Murphy elements).
Eigenvalues for the generators

Lynchpin Theorem (Okounkov-Vershik ’04)

The GZ Algebra $< Z(1), \ldots, Z(n) >$ is generated by the elements X_i for $i = 1, \ldots, n$ where

$$X_i := (1i) + (2i) + \cdots + (i - 1, i)$$

In other words, every S_n conjugacy class can be built from lower ones with the “new transpositions” (the X_i are called Young-Jucys-Murphy elements).

Corollary
Eigenvalues for the generators

Lynchpin Theorem (Okounkov-Vershik ’04)

The GZ Algebra $< Z(1), \ldots, Z(n) >$ is generated by the elements X_i for $i = 1, \ldots, n$ where

$$X_i := (1i) + (2i) + \cdots + (i-1, i)$$

In other words, every S_n conjugacy class can be built from lower ones with the “new transpositions” (the X_i are called Young-Jucys-Murphy elements).

Corollary

There is an injective map from \{paths in branching graph\} to \mathbb{C}^n defined by

$$T \mapsto (a_1, \ldots, a_n)$$

where a_i are the eigenvalues of X_i applied to the corresponding GT basis vector.
Eigenvalues for the generators

Lynchpin Theorem (Okounkov-Vershik ’04)

The GZ Algebra $< Z(1), \ldots, Z(n) >$ is generated by the elements X_i for $i = 1, \ldots, n$ where

$$X_i := (1i) + (2i) + \cdots + (i-1, i)$$

In other words, every S_n conjugacy class can be built from lower ones with the “new transpositions” (the X_i are called Young-Jucys-Murphy elements).

Corollary

There is an injective map from $\{\text{paths in branching graph}\}$ to \mathbb{C}^n defined by

$$T \mapsto (a_1, \ldots, a_n)$$

where a_i are the eigenvalues of X_i applied to the corresponding GT basis vector.

We denote the image of this map by Spec(n).
Remarks about Spec(n)

- There is a bijective map from \{paths in branching graph\} to Spec(n) defined by
 \[T \mapsto (a_1, \ldots, a_n) \]
 where \(a_i\) are the eigenvalues of \(X_i\) applied to the corresponding basis vector.
Remarks about \(\text{Spec}(n) \)

- There is a bijective map from \{\text{paths in branching graph}\} to \(\text{Spec}(n) \) defined by

 \[
 T \mapsto (a_1, \ldots, a_n)
 \]

 where \(a_i \) are the eigenvalues of \(X_i \) applied to the corresponding basis vector.

- Define an equivalence relation on \(\text{Spec}(n) \) by

 \[
 (a_1, \ldots, a_n) \approx (b_1, \ldots, b_n)
 \]

 if the corresponding paths have the same start (the same irreducible representation).

- There are \(p(n) \) equivalence classes.

- \(\text{Spec}(n) \) is a finite set. If we understood \(\text{Spec}(n) \) (with combinatorics) we would understand the branching graph.
Remarks about Spec(n)

- There is a bijective map from \{paths in branching graph\} to Spec(n) defined by
 \[T \mapsto (a_1, \ldots, a_n) \]
 where \(a_i \) are the eigenvalues of \(X_i \) applied to the corresponding basis vector.

- Define an equivalence relation on Spec(n) by
 \[(a_1, \ldots, a_n) \approx (b_1, \ldots, b_n)\]
 if the corresponding paths have the same start (the same irreducible representation). There are \(p(n) \) equivalence classes.
Remarks about Spec(n)

- There is a bijective map from \{ \text{paths in branching graph} \} to Spec(n) defined by
 \[T \mapsto (a_1, \ldots, a_n) \]
 where \(a_i \) are the eigenvalues of \(X_i \) applied to the corresponding basis vector.

- Define an equivalence relation on Spec(n) by
 \[(a_1, \ldots, a_n) \approx (b_1, \ldots, b_n) \]
 if the corresponding paths have the same start (the same irreducible representation). There are \(p(n) \) equivalence classes.

- Spec(n) is a finite set. If we understood Spec(n) (with combinatorics) we would understand the branching graph.
Properties of Spec(n)

Lemma; $L[S_n]$ identity

Proof: immediate from conjugating X_i by s_i.

Let $a = (a_1, \ldots, a_n) \in \text{Spec}(n)$ with corresponding basis vector v_a and representation ρ_a. If α is the coefficient of v_a in $\rho_a(s_i)v_a$, then α satisfies

$1 = (a_i + 1 - a_i)\alpha$

Proof: Apply the above identity to v_a and equate coefficients on v_a.

Duncan Levear
Properties of Spec(n)

Lemma; $L[S_n]$ identity

If $s_i := (i - 1, i)$ then

\[X_i s_i = s_i X_{i+1} - 1 \]
Properties of Spec(n)

Lemma; $L[S_n]$ identity
If $s_i := (i - 1, i)$ then

$$X_is_i = s_iX_{i+1} - 1$$ \hspace{1cm} (3)

Proof: immediate from conjugating X_i by s_i.

Lemma
Let $a = (a_1, \ldots, a_n) \in \text{Spec}(n)$ with corresponding basis vector ν_a and representation ρ_a. If α is the coefficient of ν_a in $\rho_a(s_i)\nu$, then α satisfies

$$1 = (a_{i+1} - a_i)\alpha$$

Proof: Apply the above identity to ν and equate coefficients on ν.
Properties of Spec(n)

Lemma; $L[S_n]$ identity

If $s_i := (i - 1, i)$ then

$$X_i s_i = s_i X_{i+1} - 1$$ \hfill (3)

Proof: immediate from conjugating X_i by s_i.
Properties of Spec(n)

Lemma; $L[S_n]$ identity

If $s_i := (i - 1, i)$ then

$$X_i s_i = s_i X_{i+1} - 1$$ \hspace{1cm} (3)

Proof: immediate from conjugating X_i by s_i.

Lemma
Properties of Spec(n)

Lemma; $L[S_n]$ identity

If $s_i := (i - 1, i)$ then

$$X_is_i = s_iX_{i+1} - 1 \quad (3)$$

Proof: immediate from conjugating X_i by s_i.

Lemma

Let $a = (a_1, \ldots, a_n) \in \text{Spec}(n)$ with corresponding basis vector v_a and representation ρ_a. If α is the coefficient of v_a in $\rho_a(s_i)v$, then α satisfies

$$1 = (a_{i+1} - a_i)\alpha$$
Properties of Spec(n)

Lemma; $L[S_n]$ identity

If $s_i := (i - 1, i)$ then

$$X_is_i = s_iX_{i+1} - 1 \quad (3)$$

Proof: immediate from conjugating X_i by s_i.

Lemma

Let $a = (a_1, \ldots, a_n) \in Spec(n)$ with corresponding basis vector v_a and representation ρ_a. If α is the coefficient of v_a in $\rho_a(s_i)v$, then α satisfies

$$1 = (a_{i+1} - a_i)\alpha$$

Proof: Apply the above identity to v and equate coefficients on v.
Properties of Spec(\(n\))

Lemma

Let \(a = (a_1, \ldots, a_n) \in \text{Spec}(n) \) with corresponding basis vector \(v_a \) and representation \(\rho_a \). If \(\alpha \) is the coefficient of \(v_a \) in \(\rho_a(s_i)v \), then \(\alpha \) satisfies

\[
1 = (a_{i+1} - a_i)\alpha
\]

\(^6\)You can make a unitary argument, or compute explicitly the representation theory of a certain two-dimensional Hecke algebra.
Properties of Spec(n)

Lemma
Let $a = (a_1, \ldots, a_n) \in \text{Spec}(n)$ with corresponding basis vector v_a and representation ρ_a. If α is the coefficient of v_a in $\rho_a(s_i)v$, then α satisfies

$$1 = (a_{i+1} - a_i)\alpha$$

Results for arbitrary $(a_1, \ldots, a_n) \in \text{Spec}(n)$:

6 You can make a unitary argument, or compute explicitly the representation theory of a certain two-dimensional Hecke algebra.
Properties of Spec(n)

Lemma

Let \(a = (a_1, \ldots, a_n) \in \text{Spec}(n)\) with corresponding basis vector \(v_a\) and representation \(\rho_a\). If \(\alpha\) is the coefficient of \(v_a\) in \(\rho_a(s_i)v\), then \(\alpha\) satisfies

\[1 = (a_{i+1} - a_i)\alpha\]

Results for arbitrary \((a_1, \ldots, a_n) \in \text{Spec}(n)\):

- \(a_{i+1} \neq a_i\) for all \(i = 1, \ldots, n - 1\)

\(^6\)You can make a unitary argument, or compute explicitly the representation theory of a certain two-dimensional Hecke algebra.
Properties of Spec(n)

Lemma
Let $a = (a_1, \ldots, a_n) \in \text{Spec}(n)$ with corresponding basis vector v_a and representation ρ_a. If α is the coefficient of v_a in $\rho_a(s_i)v$, then α satisfies

$$1 = (a_{i+1} - a_i)\alpha$$

Results for arbitrary $(a_1, \ldots, a_n) \in \text{Spec}(n)$:

- $a_{i+1} \neq a_i$ for all $i = 1, \ldots, n - 1$
- if $\rho_a(s_i)v_a = \alpha v_a$ then $a_{i+1} = a_i \pm 1$

You can make a unitary argument, or compute explicitly the representation theory of a certain two-dimensional Hecke algebra.
Properties of Spec(n)

Lemma
Let $a = (a_1, \ldots, a_n) \in \text{Spec}(n)$ with corresponding basis vector v_a and representation ρ_a. If α is the coefficient of v_a in $\rho_a(s_i)v$, then α satisfies

$$1 = (a_{i+1} - a_i)\alpha$$

Results for arbitrary $(a_1, \ldots, a_n) \in \text{Spec}(n)$:

- $a_{i+1} \neq a_i$ for all $i = 1, \ldots, n - 1$
- if $\rho_a(s_i)v_a = \alpha v_a$ then $a_{i+1} = a_i \pm 1$
- in fact, the converse is also true, with a bit more work\(^6\)

\(^6\)You can make a unitary argument, or compute explicitly the representation theory of a certain two-dimensional Hecke algebra.
Properties of Spec(n)

Lemma

Let \(a = (a_1, \ldots, a_n) \in \text{Spec}(n) \) with corresponding basis vector \(v_a \) and representation \(\rho_a \). If \(\alpha \) is the coefficient of \(v_a \) in \(\rho_a(s_i)v \), then \(\alpha \) satisfies

\[
1 = (a_{i+1} - a_i)\alpha
\]

Results for arbitrary \((a_1, \ldots, a_n) \in \text{Spec}(n)\):

- \(a_{i+1} \neq a_i \) for all \(i = 1, \ldots, n-1 \)
- if \(\rho_a(s_i)v_a = \alpha v_a \) then \(a_{i+1} = a_i \pm 1 \)
- in fact, the converse is also true, with a bit more work\(^6\)
- We also know \(a_1 = 0 \)

\(^6\)You can make a unitary argument, or compute explicitly the representation theory of a certain two-dimensional Hecke algebra.
Because $S_{n-1} \lhd S_n$, we can define the branching graph, and paths of this graph index a special basis called the GT basis.
Summary

- Because $S_{n-1} \triangleleft S_n$, we can define the branching graph, and paths of this graph index a special basis called the GT basis.

- A natural question is “who likes this basis?” I.e., who has this basis as eigenvectors?
Because $S_{n-1} \subset S_n$, we can define the branching graph, and paths of this graph index a special basis called the GT basis.

A natural question is “who likes this basis?” I.e., who has this basis as eigenvectors?

The answer to this question is a sub-algebra of $L[S_n]$ which happens to be generated by the “new transposition” elements X_i.
Because $S_{n-1} \triangleleft S_n$, we can define the branching graph, and paths of this graph index a special basis called the GT basis.

A natural question is “who likes this basis?” I.e., who has this basis as eigenvectors?

The answer to this question is a sub-algebra of $L[S_n]$ which happens to be generated by the “new transposition” elements X_i.

Therefore, we consider the set of possible eigenvalues of the X_i applied to this basis.
Summary

- Because $S_{n-1} \triangleleft S_n$, we can define the branching graph, and paths of this graph index a special basis called the GT basis.
- A natural question is “who likes this basis?” I.e., who has this basis as eigenvectors?
- The answer to this question is a sub-algebra of $L[S_n]$ which happens to be generated by the “new transposition” elements X_i.
- Therefore, we consider the set of possible eigenvalues of the X_i applied to this basis.
- This n-tuple encodes a lot— you can deduce the basis vector just from its eigenvalues (because the X_i generate all diagonal operators for that basis). So Spec(n) encodes the entire branching graph.
Because $S_{n-1} \lessdot S_n$, we can define the branching graph, and paths of this graph index a special basis called the GT basis.

A natural question is “who likes this basis?” I.e., who has this basis as eigenvectors?

The answer to this question is a sub-algebra of $L[S_n]$ which happens to be generated by the “new transposition” elements X_i.

Therefore, we consider the set of possible eigenvalues of the X_i applied to this basis.

This n-tuple encodes a lot— you can deduce the basis vector just from its eigenvalues (because the X_i generate all diagonal operators for that basis). So Spec(n) encodes the entire branching graph.

We currently have a few small results about elements of Spec(n), but this is far from a characterization.
We want to find some structure which encodes Spec(n). I.e. describe the n-tuples of complex numbers combinatorially. This will be accomplished through Standard Young Tableaux.