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ABSTRACT. We give a simple proof of George Andrews’s balanced 5F; evaluation
using two fundamental principles: the nth difference of a polynomial of degree less
than n is zero, and a polynomial of degree n that vanishes at n+1 points is identically
zero.

1. INTRODUCTION

George Andrews [I], in his evaluation of the Mills-Robbins-Rumsey determinant,
needed the balanced 5F evaluation

2m—l,z+2m+2,x—z+L z4+m+1,z2+m+1
5F4( 2 ‘1)207 (1)

tr+ i lr4+1,2242m+2,20-22+1

where m is a nonnegative integer. Here the hypergeometric series is defined by
g5 O — (@)k - (ap)k
vka (bl,...,bq t) % R (b0)e - (by)r
and (a)j is the rising factorial a(a +1)---(a + k — 1). Andrews’s proof of used
Pfaff’s method, and required a complicated induction that proved 20 related identities.
Andrews later discussed these identities and Pfaff’s method in comparison with the
WZ method [2], and a proof of using the Gosper-Zeilberger algorithm was given by
Ekhad and Zeilberger [5]. A completely different proof of was given by Andrews
and Stanton [3]. Generalizations of (1)), proved using known transformations for hy-
pergeometric series, have been given by Stanton [6], Chu [4], and Verma, Jain, and
Jain [7].
We give here a simple self-contained proof of Andrews’s identity, by using two fun-
damental principles: first, the nth difference of a polynomial of degree less than n is 0,
and second, a polynomial of degree n that vanishes at n + 1 points is identically 0.

To illustrate the method, we first use it to prove the Pfaff-Saalschiitz identity. We
then prove Andrews’s identity.
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2. LEMMAS

We first give two lemmas that we will need later on. Although they are well known,
for completeness we include the short proofs.

Lemma 1. If p(k) is a polynomial of degree less than n then

k=0

Proof. Since the polynomials (I;) form a basis for the vector space of all polynomials
in k, it suffices by linearity to show that if i < n then >_;_(—=1)*(}) (]:) = 0. But

S0t (3) (1) = o () e () = (a-v=o
by the binomial theorem. K 0

Lemma 2. If a« — = d is a nonnegative integer, then («)x/(5)k, as a function of k,
1s a polynomial of degree d.

Proof. We first note the formula
(Wit; = (w)iu +1);,

which we will also use later. Then

8) (@ (B)aB+ Dk _ (B)asn
"B (B)n (B)x

We shall also use the fact that a polynomial of degree at most d is determined by
its value at d + 1 points, or by its leading coefficient and its value at d points.

= (B+k)a. O

3. THE PFAFF-SAALSCHUTZ IDENTITY

As a warm-up we give a proof of the Pfaff-Saalschiitz identity
—m, a, b (c—a)m(c—b)pm
F. 1) = ) 2
’ 2(0,1—m—|—a+b—c > (C)m(c—a—Db)y, 2)

We assume that a — b is not an integer; it is easy to see that the identity with this
restriction implies the general case. First we show that the left side of vanishes if

c—a€{0,—1,...,—(m—1)}. With ¢ — a = —i, we may write the left side of as
S + i)k (0)
RTLANG . 3

By Lemma [2]
(c+ i) (0)
(©r (I—m+i+Db)y
is a polynomial in k of degree i + (m —i — 1) = m — 1, so by Lemma , the sum
vanishes. By symmetry, also vanishes if c —b € {0,—1,...,—(m —1)}.
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Multiplying the left side of by (¢)m(c —a — b),, and simplifying gives

)

=3 () @ Bsle—a =i

k=0

—m, a, b

(€Jm(e—a=b)msks (c,l—m+a+b—c

Then (4]) is a monic polynomial in ¢ of degree 2m that vanishes for the 2m distinct
(since a — b is not an integer) values c = a —i and ¢ = b—1, for i € {0,1,...m}. Thus
is equal to (¢ — a)y, (¢ — b)pm.

We note that the sum in the Pfaff-Saalschiitz theorem is balanced; that is, the sum
of the denominator parameters is one more than the sum of the numerator parameters.
It is not hard to show that if a balanced hypergeometric series can be expressed in the
form

k=0

where p(k) is a polynomial in k, then p(k) must have degree m — 1, and thus the sum
vanishes by Lemmal [l For this reason, our method is especially applicable to balanced
summation formulas.

4. ANDREWS’S IDENTITY

To prove , we start by making the substitution x = y+2z, obtaining the equivalent
identity
P, (—Zm— 11,y+2z%1—21m—|—2,y+z+%,y+22+m—|—1,z+m+1 ‘ 1) _0. (5)
Wtzt+g,5y+tz+1,22+2m+ 2,2y + 22+ 1
We shall first show that (5]) holds when y € {0,1,...,2m + 1} by applying Lemma [1]

We will then derive the general result by expressing the sum as a polynomial in y of
degree 2m.

Lemma 3. Formula holds fory € {0,1,...,2m + 1}.
Proof. We write the sum in as

3 (")

k=0
where
y+2z242m+2)(y+22+m+ 1),

_

and
(y+ 24+ 3)k(z+m+ 1)

P(k) = .
2(F) Gy+z+3)k(3y+z+1)
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It will suffice to show that for each y € {0,1,...,2m + 1}, Pi(k) and P»(k) are
polynomials in k. We do this by pairing up the numerator and denominator factors in
Pi(k) and Py(k) so that Lemma [2] applies.

For 0 <y < m we use

(y+2242m+2) (y+2z+m+ 1)

Py(k) = :
(k) (22 + 2m + 2); 2y +2z+ 1)

and form +1 <y <2m + 1, we use

(y+224+2m+2)r (y+2z+m+ 1)

Py(k) = :
(k) (2y + 22 + 1), (22 + 2m + 2),,

For y even, we use

(y+2z+3)k (z+m 41y
Gytz+y)e Gutz+e

Py(k) =

and for y odd we use

(y+z+g  (+m+1)

BP(k) = .
»(F) (%y—i—z—l—l)k (%y+z~l—%)k

It is easily checked that Lemma [2| applies in all cases. So for each y, Py (k)Px(k) is a
polynomial in k of degree 2m, and the result follows from Lemma [I]

Lemma 4. The series in (), after multiplication by (y + z + 1) (y + 22 4+ 1), is a
polynomial in y of degree at most 2m.

Proof. We show that each term in the sum, when multiplied by (y+2+1),,(y+22+1),,
is a polynomial in y of degree at most 2m. Ignoring factors that do not contain y, we
see that we must show that for 0 < k < 2m + 1,

(y+2z+2m+2),(y+ 2+ 5y + 2z +m+ 1),
Qy+ 2+ DBy + 2+ 12y + 22 + 1)y

(y+z+ Dnly+22+1),

is a polynomial in y of degree at most 2m. To do this we define

(y+ 2+ 3k

Qi (y) = (y+2+1)m( (6)

and
(y+2z4+2m+2)p(y+2z+m+ 1)
(3y+ 2+ 33y +2+ 1)

Qa2(y) = (Y + 22+ 1)m (7)

and we show that @Q;(y) and Q2(y) are both polynomials in y of degree m. We will
use the formulas



A SIMPLE PROOF OF ANDREWS’S 5F; EVALUATION 5

For k < m, we have

(y+2+ 3
(2y + 22 + 1)y,
(2y + 22 + 1)o
2y +22+4 1)
=2 %y + 2+ 1+k)p 2y +22+ 14 k),

Q) =W+z+1ply+2+1+E)mus

=2yt 2+ 1+ k) mr

and for m+1 < k < 2m + 1 we have

1 3
Qu(y) =Y +z+1)m thaa 2)?2;1%;14;)72 F
2y + 22 4+ 1)oms1
(2y + 2z + 1),
=27 N2y + 22+ 1+ k)omsr—k(y + 2+ m+ 21,

= g7l (y+z+m+2)pma

so in both cases, Q)1 (y) is a polynomial in y of degree m.

We have

QﬁwZQ%@+ﬂz+UmM@+az+%n+m@
(y -+ 22’ + 1>2k
For kK < m we have
Qa(y) = 2% (y + 22 + 1+ 2k)m_i(y + 22 + 2m + 2),..
Form+1<k<2m+ 1, we have
(y + 22+ 1)
(Y + 22 + 1)amn (y+22+4 1)
(y + 2z + 1)2m+1+k
(y + 2z + 1>2k

= 22k<y +z+2m+ Q)kfmfl(y +224+1+ 2k)2m+17k-

= 2% (y 4+ 24 2m + 2)j_ 1

Thus in both cases, Q2(y) is also a polynomial in y of degree m.
As an alternative, we could have expressed Q1 (y) and @Q1(y) as rising factorials with
respect to vy,
(z+m+1),(z+k+3),
(z+ 3k + )y (z + 3k + 1),
(2z+m+k+1),(224+2m+ k+2),
(22 42k +1),(22 4+ 2m + 2),

Q:1(y) = C1

Q2(y) = Cy

Y

where C; and C5 do not contain y, and applied Lemma O

We can now finish the proof of (§). By Lemmas [3|and [4 (y + 2z + 1) (y 4+ 22 + 1),
times the sum in is a polynomial in y of degree at most 2m that vanishes for
y=20,1,...,2m + 1. Therefore this polynomial is identically zero.
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