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Abstract

Given a set of positive integers A = {a1, . . . , an}, we study the number pA(t) of
nonnegative integer solutions (m1, . . . ,mn) to

∑n
j=1mjaj = t. We derive an explicit

formula for the polynomial part of pA.

Let A = {a1, . . . , an} be a set of positive integers with gcd(a1, . . . , an) = 1. The
classical Frobenius problem asks for the largest integer t (the Frobenius number) such
that

m1a1 + · · ·+mnan = t

has no solution in nonnegative integers m1, . . . ,mn. For n = 2, the Frobenius number is
(a1 − 1)(a2 − 1) − 1, as is well known, but the problem is extremely difficult for n > 2.
(For surveys of the Frobenius problem, see [R, Se].) One approach [BDR, I, K, SÖ] is to
study the restricted partition function pA(t), the number of nonnegative integer solutions
(m1, . . . ,mn) to

∑n
j=1 mjaj = t, where t is a nonnegative integer. The Frobenius number

is the largest integral zero of pA(t). Note that, in contrast to the Frobenius problem, in
the definition of pA we do not require a1, . . . , an to be relatively prime. In the following,
a1, . . . , an are arbitrary positive integers.
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It is clear that pA(t) is the coefficient of zt in the generating function

G(z) =
1

(1− za1) · · · (1− zan)
.

If we expand G(z) by partial fractions, we see that pA(t) can be written in the form∑
λ

PA,λ(t)λ
t,

where the sum is over all complex numbers λ such that λai = 1 for some i, and PA,λ(t) is
a polynomial in t. The aim of this paper is to give an explicit formula for PA,1(t), which
we denote by PA(t) and call the polynomial part of pA(t). It is easy to see that PA(t) is
a polynomial of degree n − 1. (More generally, the degree of PA,λ(t) is one less than the
number of values of i for which λai = 1.) It is well known [PS, Problem 27] that

pA(t) =
tn−1

(n− 1)! a1 · · · an
+O

(
tn−2

)
.

Our theorem is a refinement of this statement. We note that Israilov derived a more
complicated formula for PA(t) in [I].

Let us define QA(t) by pA(t) = PA(t) + QA(t). From the partial fraction expansion
above, it is clear that QA (and hence also pA) is a quasi-polynomial, that is, an expression
of the form

cd(t)t
d + · · ·+ c1(t)t+ c0(t),

where c0, . . . , cd are periodic functions in t. (See, for example, Stanley [St, Section 4.4],
for more information about quasi-polynomials.) In the special case in which the ai are
pairwise relatively prime, each PA,λ(t) for λ 6= 1 is a constant, and thus QA(t) is a
periodic function with average value 0, and this property determines QA(t), and thus
PA(t). Discussions of QA(t) can be found, for example, in [BDR, I, K].

We define the Bernoulli numbers Bj by

z

ez − 1
=
∑
j≥0

Bj
zj

j!
(1)

(so B0 = 1, B1 = −1
2
, B2 = 1

6
, B4 = − 1

30
, and Bn = 0 if n is odd and greater than 1.)

Theorem.

PA(t) =
1

a1 · · · an

n−1∑
m=0

(−1)m

(n− 1−m)!

∑
k1+···+kn=m

ak1
1 · · · aknn

Bk1 · · ·Bkn

k1! · · · kn!
tn−1−m (2)

=
1

a1 · · · an

n−1∑
m=0

(−1)m

(n− 1−m)!

×
∑

k1+2k2···+mkm=m

(−1)k2+···+km

k1! · · · km!

(
B1s1

1 · 1!

)k1

· · ·
(
Bmsm
m ·m!

)km
tn−1−m, (3)
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where si = ai1 + · · ·+ ain.

Proof. As noted earlier, pA(t) is the coefficient of zt in the generating function

G(z) =
1

(1− za1) · · · (1− zan)
.

Hence if we let f(z) = G(z)/zt+1 then pA(t) = Res(f(z), z = 0). As in [BDR], we use the

residue theorem to derive a formula for pA(t). Since clearly lim
R→∞

∫
|z|=R

f(z) dz = 0,

pA(t) = −Res(f(z), z = 1)−
∑

Res(f(z), z = λ).

Here the sum is over all nontrivial a1, . . . , anth roots of unity λ. It is not hard to see
that Res(f(z), z = λ) may be expressed in the form uλ(t)λ

−t for some polynomial uλ(t),
and thus it follows from our earlier discussion that −Res(f(z), z = λ) = PA,λ−1(t)λ−t. In
particular,

PA(t) = −Res(f(z), z = 1).

To compute this residue, note that

Res(f(z), z = 1) = Res(ezf(ez), z = 0),

so that

PA(t) = −Res

(
e−tz

(1− ea1z) · · · (1− eanz) , z = 0

)
. (4)

The coefficient of tn−1−m in PA(t) is by (4) the coefficient of z−n+m in

(−1)n−m

(n− 1−m)!
· 1

(1− ea1z) · · · (1− eanz) ,

which is the coefficient of zm in

(−1)m

(n− 1−m)! a1 · · · an
B(a1z) · · ·B(anz), (5)

where B(z) = z/(ez − 1), and this implies (2).
To prove (3), we first note that

log

(
z

ez − 1

)
=
∑
j≥1

(−1)j−1Bj

j

zj

j!
,

as can easily be proved by differentiating both sides. Then

B(a1z) · · ·B(anz) = exp
∑
j≥1

(−1)j−1Bjsj
j

zj

j!

=
∏
j≥1

exp

(
(−1)j−1Bjsj

j

zj

j!

)
. (6)
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Since B2i+1 = 0 for i > 0, (−1)j−1Bj = −Bj for j > 1, and (3) follows from (5) and (6).
2

Remark. It is possible to avoid the use of complex analysis and give a purely formal power
series proof of the theorem. We indicate here how this can be done. We work with formal
Laurent series, which are power series with finitely many negative powers of the variable.
If F (z) =

∑
i uiz

i is a formal Laurent series (ui is nonzero for only finitely many negative
values of i) then the residue of F (z) is resF (z) = u−1. An elementary fact about formal
Laurent series is the change of variables formula for residues: If g(z) is a formal power
series with g(0) = 0 and g′(0) 6= 0 then

resF (z) = resF (g(z))g′(z).

(See, for example, Goulden and Jackson [GJ, p. 15].)
By partial fractions, we have

G(z) =
1

(1− za1) · · · (1− zam)
=

c1

1− z + · · ·+ cm
(1− z)m

+R(z),

where R(z) is a rational function of z with denominator not divisible by 1− z. It follows
from our earlier discussion that

∞∑
t=0

PA(t)zt =
c1

1− z + · · ·+ cm
(1− z)m

and thus

PA(t) =
∞∑
l=1

cl

(
t+ l − 1

l − 1

)
,

where we take cl to be 0 for l > m. Now let U(z) = G(1− z). Then

U(z) =
1

(1− (1− z)a1) · · · (1− (1− z)am)

=
c1

z
+ · · ·+ cm

zm
+R(1− z),

whereR(1−z) has a formal power series expansion (with no negative powers of z), and thus
cl = res zl−1U(z). Note that this holds for all l ≥ 1, since for l > m, cl = res zl−1U(z) = 0.

Then

PA(t) =
∞∑
l=1

cl

(
t+ l − 1

l − 1

)
= res

U(z)

z

m∑
l=1

zl
(
t+ l − 1

l − 1

)
= res

U(z)

(1− z)t+1
.

We now apply the change of variables formula with g(z) = 1− ez and we obtain

PA(t) = − res
U(1− ez)

etz

= − res
e−tz

(1− ea1z) · · · (1− eamz) ,

which is (4), and the proof continues as before.
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