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1. INTRODUCTION

We prove that the order of divisibility by prime p of k!S(a (p − 1) pq, k) does not depend
on a and q if q is sufficiently large and k/p is not an odd integer. Here S(n, k) denotes
the Stirling number of the second kind; i.e., the number of partitions of a set of n objects
into k nonempty subsets. The proof is based on divisibility results for p-sected alternating
binomial coefficient sums. A fairly general criterion is also given to obtain divisibility
properties of recurrent sequences when the coefficients follow some divisibility patterns.

The motivation of the paper is to generalize the identity [8]

ν2(k!S(n, k)) = k − 1, 1 ≤ k ≤ n, (1)

where S(n, k) denotes the Stirling number of the second kind, and n = a 2q, a is odd, and q

is sufficiently large (for example, q ≥ k − 2 suffices). Here νp(m) denotes the order of
divisibility by prime p of m, i.e., the greatest integer e such that pe divides m. It is worth
noting the remarkable fact that the order of divisibility by 2 does not depend on a and q

if q is sufficiently large. We will clarify later what value is large enough.
Our objective in this paper is to analyze νp(k!S(n, k)) for an arbitrary prime p. It

turns out that identity (1) can be generalized to calculate the exact value of νp(k!S(n, k))
if n = a (p − 1) pq and k is divisible by p − 1. The main result of this paper is

Theorem 1: If n = a (p − 1) pq, 1 ≤ k ≤ n, a and q are positive integers such that
(a, p) = 1, q is sufficiently large, and k/p is not an odd integer, then

νp(k!S(n, k)) =
⌊

k − 1
p − 1

⌋
+ τp(k),

where τp(k) is a nonnegative integer. Moreover, if k is a multiple of p− 1 then τp(k) = 0.

Here �x� denotes the greatest integer function. Note that the order of divisibility by p

of k!S(a (p − 1) pq, k) does not depend on a and q if q is sufficiently large. For instance,

∗
partially supported by NSF grant DMS-9622456



2

we may choose q such that q > k
p−1 − 2 in this case. Numerical evidence suggests that

the condition on the magnitude of q may be relaxed and it appears that n ≥ k suffices in
many cases (cf. [8]).

The case excluded by Theorem 1, in which k/p is an odd integer, behaves somewhat
differently:

Theorem 2: For any odd prime p, if k/p is an odd integer then νp(k!S(a (p − 1) pq, k)) >

q.

In Section 2 we prove a fundamental lemma: If n = a(p − 1)pq then

(−1)k+1k!S(n, k) ≡ Gp(k) (mod pq+1), (2)

where

Gp(k) =
∑
p|i

(
k

i

)
(−1)i.

All of our divisibility results for the Stirling numbers are consequences of divisibility results
for the alternating binomial coefficient sums Gp(k), which are of independent interest. The-
orem 2 is an immediate consequence of (2), since if k/p is an odd integer, the corresponding
binomial coefficient sum is 0.

To prove Theorem 1, we prove the analogous divisibility result for Gp(k). The proof is
presented in Section 2, and it combines number-theoretical, combinatorial and analytical
arguments. By an application of Euler’s theorem, we prove (2). We then apply p-section
of the binomial expansion of (1 − x)k to express Gp(k) as a sum of p − 1 terms involving
roots of unity. We take a closer look at this sum from different perspectives in Sections 3
and 4 and give a comprehensive study of the special cases p = 3 and 5. We choose two
different approaches in these sections: we illustrate the use of roots of unity in the case in
which p = 3, and for p = 5 we use known results relating G5(k) to Fibonacci and Lucas
numbers.

We outline a generating function based method to analyze the sum in terms of a
recurrent sequence in Section 2. A fairly general lemma (Lemma 7) is also given in order to
provide the framework for proving divisibility properties. The reader may find it a helpful
tool in obtaining divisibility properties of recurrent sequences when the coefficients follow
some divisibility patterns (e.g., [1]). The lemma complements previous results that can be
found, for example, in [11] and [13]. Theorem 1 follows by an application of Lemma 7. A
similar approach yields

Theorem 3: For any odd prime p and any integer t,

∑
i≡t (mod p)

(
k

i

)
(−1)i ≡

{
(−1)

k
p−1−1p

k
p−1−1 (mod p

k
p−1 ), if k is divisible by p − 1,

0 (mod p� k
p−1�), otherwise.
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Fleck [4] and Kapferer [7] proved the second part of Theorem 3, and Lundell [10]
obtained the first part (Theorem 1.1 (ii)). Lundell has only indicated that the proof is
based on a tedious induction on � k

p−1�. The case t = 0, k = p(p − 1) of Theorem 3 was
proposed as an American Mathematical Monthly problem by Evans [3].

The proofs of Lemma 7 and Theorem 3 are given in Section 5 in which an application
of Theorem 3 is also presented to prove its generalization:

Theorem 4: Let p be an odd prime and let m be an integer with 0 ≤ m ≤ min(k, p)
such that r = k−m

p−1 is an integer. We set r ≡ r′ (mod p) with 1 ≤ r′ ≤ p. If r′ ≥ m then
for any integer t,

∑
i≡t (mod p)

(
k

i

)
(−1)iim ≡ (−1)m+ k−m

p−1 −1

(
k

m

)
m! p

k−m
p−1 −1 (mod p

k−m
p−1 +νp

(
(k

m)m!
)
).

For example, it follows that
∑

i≡t (mod 17)

(
135
i

)
(−1)ii7 ≡

(
135
7

)
7! 177 (mod 178), inde-

pendently of t. Here we have m = 7 and r′ = r = 8.
Theorem 4 is a generalization of Theorem 1.7 of [10]. Note that the conditions of

Theorem 4 are always satisfied for m = 0 and 1 provided p − 1 | k − m. The theorem can
be generalized to the case in which p = 2 and m = 0 or 1, also (see also [8]), e.g.,

∑
2|i

(
k

i

)
=

∑
2 � | i

(
k

i

)
= 2k−1.

Some conjectures on τp(k) are discussed at the end of the paper.

2. TOOLS AND THE GENERAL CASE

Lemma 5: If n = a(p − 1)pq then

(−1)k+1k!S(n, k) ≡
∑
p|i

(
k

i

)
(−1)i (mod pq+1). (3)

Proof: By a well-known identity for the Stirling numbers [2, p. 204], we have

k!S(n, k) =
k∑

i=0

(
k

i

)
in(−1)k−i ≡

∑
p� | i

(
k

i

)
in(−1)k−i (mod pn).

For n = a (p − 1) pq and (i, p) = 1, we have

in ≡ 1 (mod pq+1)
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by Euler’s theorem. Notice that n ≥ q + 1. By the binomial theorem, we obtain

(1 − 1)k =
∑
p|i

(
k

i

)
(−1)i +

∑
p� | i

(
k

i

)
(−1)i;

therefore we have

k!S(n, k) ≡
∑
p� | i

(
k

i

)
(−1)k−i = (−1)k

∑
p� | i

(
k

i

)
(−1)i

= (−1)k+1
∑
p|i

(
k

i

)
(−1)i (mod pq+1).

Lemma 6: For any odd prime p, if k is an odd multiple of p then

∑
p|i

(
k

i

)
(−1)i = 0.

Proof: The terms
(
k
i

)
(−1)i and

(
k

k−i

)
(−1)k−i cancel in (3).

Theorem 2 is an immediate consequence of Lemmas 5 and 6. We note that by multi-
section identities ([12, p. 131] or [2, p. 84]),

∑
m|i

(
k

i

)
(−1)i =

1
m

m−1∑
t=1

(1 − ωt)k, (4)

where ω = exp(2πi/m) is a primitive mth root of unity. To illustrate the use of this
identity, we note that identity (1) follows immediately if we set m = p = 2: identities (3)
and (4) with ω = −1, imply that

k!S(n, k) ≡ (−1)k+12k−1 (mod 2q+1)

if q > k − 2. The ways of improving this lower bound on q have been discussed in [8].
In the general case, we set

Gm(k) =
∑
m|i

(
k

i

)
(−1)i. (5)

For example, for any prime p, we have Gp(k) = 1 for 0 ≤ k < p, and Gp(p) = 0. By
identity (3), we get that

k!S(a (p − 1) pq, k) ≡ (−1)k+1Gp(k) (mod pq+1) (6)
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holds for all q > 0.

Now we are going to determine the generating function of Gp(k) in identity (8) and
deduce recurrence (9). An application of Lemma 7 to this recurrence will imply the required
divisibility properties. For any odd m, we obtain

∞∑
k=0


∑

m|i
(−1)i

(
k

i

)
xk =

∑
m|i

(−1)i xi

(1 − x)i+1

=
∞∑

j=0

(−1)mj xmj

(1 − x)mj+1

=
1

1 − x

(
1 − (−x)m

(1 − x)m

)−1

=
(1 − x)m−1

(1 − x)m + xm
= 1 + x

(1 − x)m−1 − xm−1

(1 − x)m + xm
.

(7)

We note that an alternative derivation of identity (7) follows by binomial inversion [5].
From now on p denotes an odd prime. In some cases the discussion can be extended to

p = 2, as will be pointed out.
We set m = p and subtract 1 from both sides of (7), to yield

∞∑
k=1

Gp(k)xk = x
(1 − x)p−1 − xp−1

(1 − x)p + xp
. (8)

We adopt the usual notation [xk] f(x) to denote the coefficient of xk in the formal power
series f(x). If we multiply both sides of (8) by the denominator of the right-hand side
and equate coefficients, we get a useful recurrence that helps us in deriving divisibility
properties. Note that the right side is a polynomial of degree p − 1. For k ≥ p, we obtain
that the coefficient of xk is zero; i.e.,

[xk]
(
(1 − x)p + xp

) ∞∑
i=1

Gp(i)xi = 0.

It follows that
p−1∑
i=0

(−1)i

(
p

i

)
Gp(k − i) = 0,

i.e.;

Gp(k) = −
p−1∑
i=1

(−1)i

(
p

i

)
Gp(k − i). (9)
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Remark: Note that for p = 2, identity (8) has a slightly different form as it becomes

∞∑
k=1

G2(k)xk =
x

1 − 2x
,

and we can easily deduce that G2(k) = 2k−1 which agrees with ν2(k!S(n, k)) = k − 1.

The calculation of Gp(k) is more complicated for p > 2. However, we can find a lower
bound on νp(Gp(k)) and effectively compute Gp(k)(mod pνp(Gp(k))+1) if p − 1 | k by
making some observations about identity (9). We shall need the following general result:

Lemma 7: Let p be an arbitrary prime. Assume that the integral sequence ak satisfies
the recurrence

ak =
d∑

i=1

biak−i, k ≥ d + 1,

and that for some nonnegative integer m, νp(ad) = m ≥ 0 and the initial values ai, i =
1, 2, . . . , d− 1, are all divisible by pm. Let νp(bd) = r ≥ 1 and suppose that the coefficients
bi (i = 1, 2, . . . , d − 1) are all divisible by pr. We write ad = αpm and bd = βpr, and
set f(k) = fp(k, m, r) = m +

⌊
k−1

d

⌋
r. Then νp(ak) ≥ f(k), and equality holds if d | k.

Moreover, for any integer t ≥ 1, we have

atd ≡ αβt−1pm+(t−1)r (mod pm+tr).

According to the lemma, there is a transparent relation between the lower bound f(k)
on νp(ak) and the parameters νp(ad), νp(bd), and d provided ν(ai) ≥ m and νp(bi) ≥ r for
i = 1, 2, . . . , d − 1.

We prove Lemma 7 in Section 5. With its help, we can now prove Theorem 1.

Proof of Theorem 1: By identity (5), we have ai = Gp(i) = 1, for i = 1, 2, . . . , p−1,
and by identity (9), bi = (−1)i+1

(
p
i

)
for i = 1, 2, . . . , p − 1; therefore, νp(ai) = 0 and

νp(bi) = 1. We apply Lemma 7 with d = p − 1, m = 0, r = 1, α = 1, β = −1, and s = 2,

and get

Gp(k) = ak ≡
{

(−1)
k

p−1−1p
k

p−1−1 (mod p
k

p−1 ), if k is divisible by p − 1,
0 (mod p� k

p−1�), otherwise.
(10)

It follows that νp(ak) ≥ k
p−1 −1, and equality holds if and only if p−1 | k. We define τp(k)

by τp(k) = νp(ak)−�k−1
p−1 �. By identities (6) and (10), it follows that for all q > νp(ak)−1,

νp(k!S(n, k)) = νp(ak), which concludes the proof of Theorem 1.

In the next two sections, we study the cases p = 3 and p = 5 in detail.
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3. AN APPLICATION, p = 3

We set m = p = 3 and ω3 = 1. By identities (3) and (4), we have

∑
3|i

(
k

i

)
(−1)i =

1
3
(
(1 − ω)k + (1 − ω2)k

)
=

1
3
(1 − ω)k

(
1 + (1 + ω)k

)
. (11)

Note that 1+ω = −ω2, and (1−ω)2 = 1−2ω+ω2 = −3ω. Therefore identity (11) implies

∑
3|i

(
k

i

)
(−1)i =

1
3
(1 − ω)k

(
1 + (−ω2)k

)
=

1
3
(−3ω)k/2

(
1 + (−ω2)k

)
. (12)

For 6 | k we get 1
3 (−3ω)k/22 = (−1)k/22 · 3k/2−1, yielding ν3(k!S(n, k)) = k/2 − 1 for

q > k/2 − 2.

For k even and 3 � | k, by identity (12) we have (−1)k/23k/2−1ωk/2(1 + ω2k) =
(−1)k/23k/2−1(ωk/2 + ω−k/2) = (−1)k/2+13k/2−1, since ωk/2 + ω−k/2 = ω + ω−1 = −1 in
this case.

We are left with cases in which k is odd. For k odd and 3 � | k we have two cases.
If k ≡ 1 (mod 6), say k = 6l + 1 for some integer l ≥ 0, then by identity (11) we
obtain 1

3 (1−ω)6l(1−ω)
(
1 + (−ω2)6l+1

)
= 1

3 (−3ω)3l(1−ω)(1−ω2) = (−3)3l = (−3)
k−1
2 .

If k ≡ 5 (mod 6), say k = 6l + 5 for some integer l ≥ 0, then by identity (11) we
obtain 1

3 (1−ω)6l(1−ω)5
(
1 + (−ω2)6l+5

)
= 1

3 (−3ω)3l(1−ω)5(1−ω) = 1
3 (−3)3l(−3ω)3 =

(−1)
k+1
2 3

k−1
2 .

In summary, we get

Theorem 8: For q >
⌊

k−1
2

⌋
− 1, k > 0, and k �≡ 3 (mod 6), we have

ν3(k!S(2a 3q, k)) =
⌊

k − 1
2

⌋
.

Recall that if k/3 is an odd integer, then ν3(k!S(n, k)) > q by Theorem 2.

4. AN APPLICATION, p = 5

For p = 5, we can use the fact that G5(k) can be expressed explicitly in terms of
Fibonacci or Lucas numbers, with the formula depending on k modulo 20, as shown by
Howard and Witt [6]. (The Fibonacci numbers Fn are given by F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2. The Lucas numbers Ln satisfy the same recurrence, but
with the initial conditions L0 = 2 and L1 = 1.)

The power of 5 dividing a Fibonacci or Lucas number is determined by the following
result [9]:
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Lemma 9: For all n ≥ 0 we have ν5(Fn) = ν5(n). On the other hand, Ln is not divisible
by 5 for any n.

Theorem 10: If k ≡ 5 (mod 10) then G5(k) = 0. If k �≡ 5 (mod 10) then

ν5

(
G5(k)

)
=

⌊
k − 1

4

⌋
+ τ5(k),

where

τ5(k) =




ν5(k + 1), if k ≡ 9 (mod 20)
ν5(k), if k ≡ 10 (mod 20)
ν5(k + 2), if k ≡ 18 (mod 20)
0, otherwise.

(13)

Proof: From a result of Howard and Witt [6, Theorem 3.2], we find that the value of
5−�(k−1)/4�G5(k) is given by the following table:

k mod 20 0 1 2 3 4
5−�(k−1)/4�G5(k) 2Lk/2 F(k+1)/2 Fk/2+1 L(k−1)/2 Lk/2−1

k mod 20 5 6 7 8 9
5−�(k−1)/4�G5(k) 0 −Fk/2−1 −L(k−1)/2 −Lk/2+1 −F(k+1)/2

k mod 20 10 11 12 13 14
5−�(k−1)/4�G5(k) −2Fk/2 −L(k+1)/2 −Lk/2+1 −F(k−1)/2 −Fk/2−1

k mod 20 15 16 17 18 19
5−�(k−1)/4�G5(k) 0 Lk/2−1 F(k−1)/2 Fk/2+1 L(k+1)/2

The result then follows easily from Lemma 9.

We can now easily derive our main result on the divisibility of Stirling numbers by
powers of 5.

Theorem 11: If n is divisible by 4 · 5q, where q is sufficiently large, and k �≡ 5 (mod 10),
then

ν5

(
k!S(n, k)

)
= ν5

(
G5(k)

)
=

⌊
k − 1

4

⌋
+ τ5(k),

where τ5(k) is given by (13).

Proof: Apply Lemma 5 to Theorem 10.

Note that in Theorem 11 any q exceeding ν5(k!S(n, k)) − 1 will suffice; for instance,
we can select the lower bound

⌊
k−1
4

⌋
+ τ5(k) − 1.
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Our proof of Theorem 10 does not generalize to other primes, so we mention another
approach that in principle does generalize, though it is not easy to apply it to primes larger
than 5.

The basic idea is to p-sect the generating functions
∑

k Gp(k)xk. If A(x) = N(x)/D(x),
where N(x) and D(x) are polynomials, then we can determine all of the p-sections of A(x)
by multiplying the numerator and denominator of A(x) by D(ωx)D(ω2x) · · ·D(ωp−1x),
where ω is a primitive pth root of unity: since D(x)D(ωx) · · ·D(ωp−1x) is invariant under
substituting ωx for x, it must be a polynomial in xp. For example, we find in this way
that ∞∑

k=1

G3(k)xk = x
(1 − x)2 − x2

(1 − x)3 + x3
=

x + x2 − 3x4 − 9x5 − 18x6

1 + 27x6
(14)

and ∞∑
k=1

G5(k)xk = x
(1 − x)4 − x4

(1 − x)5 + x5
=

N5(x)
1 + 54x10 + 55x20

, (15)

where

N5(x) = x + x2 + x3 + x4 − 5x6 − 20x7 − 55x8 − 125x9 − 250x10 + 175x11

− 100x12 − 375x13 − 375x14 + 500x16 + 625x17 − 1250x19 − 2500x20.
(16)

Of course, once we have found these formulas, by whatever method, they may be immedi-
ately verified.

We note that in both of these generating functions the denominator is actually a poly-
nomial in x2p rather than just in xp, and it is not difficult to show that this is true in
general.

From (14) we can immediately derive a formula for G3(k). With somewhat more
difficulty one can use (15) and (16) to determine the exact power of 5 dividing G5(k) and
thereby give a different proof of Theorem 10.

5. THE PROOFS OF LEMMA 7, THEOREM 3, AND THEOREM 4

We present the proofs of some lemmas and theorems that were stated in Section 2.

Proof of Lemma 7: We prove that the following two assertions hold, by induction
on k:

(i) νp(ak) ≥ f(k)
(ii) If k = td, where t is a positive integer, then ak ≡ αβt−1pm+(t−1)r (mod pm+tr).
Note that (ii) implies that νp(ak) = f(k).

If 1 ≤ k ≤ d, then these assertions are consequences of the initial conditions. Now
suppose that (i) and (ii) hold for ak−d, . . . , ak−1. Then the induction hypothesis implies
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that biak−i is divisible by pr+f(k−i) for i = 1, 2, . . . , d. We have r+f(k−i) ≥ r+f(k−d) =
f(k), so biak−i is divisible by pf(k), and thus so is ak = b1ak−1 + · · ·+ bdak−d. This proves
(i).

For (ii), suppose that k = td. By the induction hypothesis we have

a(t−1)d ≡ αβt−2pm+(t−2)r (mod pm+(t−1)r)

and

νp(atd−i) ≥ m +
⌊

td − i − 1
d

⌋
r = m + (t − 1)r, for 1 ≤ i < d.

Thus
bda(t−1)d ≡ βpr · αβt−2pm+(t−2)r = αβt−1pm+(t−1)r (mod pm+tr)

and
νp(biatd−i) ≥ m + tr, for 1 ≤ i < d.

Then (ii) follows from the recurrence for ak.

We note that the lemma extends the study of situations discussed in [11] and [13] by
relaxing the condition that the coefficient bd be relatively prime to the modulus.

We can further generalize identity (10) and obtain the

Proof of Theorem 3: Analogously to the definition of (5), we set, for 0 ≤ t ≤ m−1,

Gm(k, t) =
∑

i≡t (mod m)

(
k

i

)
(−1)i.

In a manner similar to the derivation of identity (7), for every odd m, we obtain that

∞∑
k=0


 ∑

i≡t (mod m)

(−1)i

(
k

i

)
xk =

(−x)t(1 − x)m−t−1

(1 − x)m + xm
.

Note that the degree of the numerator is m − 1. It is fairly easy to modify identities (8)
and (9) for Gm(k, t). An application of Lemma 7 to Gp(k, t) yields Theorem 3. We note
that here α =

(
p−1

t

)
(−1)t; hence α ≡ 1 (mod p). The congruence follows from the two

identities,
(
p
t

)
≡ 0 (mod p), 1 ≤ t ≤ p − 1, and

(
p
t

)
=

(
p−1
t−1

)
+

(
p−1

t

)
. (We note that for

every prime p and positive integer n,
(
pn−1

t

)
≡ (−1)t (mod p) also holds.)

The interested reader may try another application of Lemma 7 to prove the following
identity (cf. [1])

ν2

( n−1∑
k=0

(
2n − 1

2k

)
3k

)
= n − 1, n = 1, 2, . . . .
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Finally, we note that it would be interesting to find an upper bound on νp(ak) − f(k) as
a function of k. The case p = 5 and k ≡ 9, 10, or 18 (mod 20) shows that the difference
can be as big as C log k with some positive constant C.

We conclude this section with the

Proof of Theorem 4: Theorem 3 deals with the case in which m = 0, thus we may
assume that m ≥ 1. Using the identities im =

∑m
l=0 S(m, l)

(
i
l

)
l! and

(
k
i

)(
i
l

)
=

(
k
l

)(
k−l
i−l

)
for l ≤ i ≤ k, we have

∑
i≡t (mod p)

(
k

i

)
(−1)iim =

∑
i≡t (mod p)

(
k

i

)
(−1)i

m∑
l=0

S(m, l)
(

i

l

)
l!

=
m∑

l=0

S(m, l)
(

k

l

)
l!

∑
i≡t (mod p)

(
k − l

i − l

)
(−1)i

=
m∑

l=0

(−1)lS(m, l)
(

k

l

)
l!

∑
i≡t−l (mod p)

(
k − l

i

)
(−1)i.

(17)

Observe that Theorem 3 applies to the last sum.
We shall show that under the conditions of Theorem 4, the term with l = m has the

smallest exponent of p on the right side of (17). If l = 0 then S(m, l) = 0 in identity (17)
so we need only consider the terms in which l ≥ 1. Let χy(x) denote the indicator function
of divisibility by y; i.e., χy(x) = 1 if and only if y | x. We shall show that

νp

((
k

l

)
l! p�

k−l
p−1 �−χp−1(k−l)

)
= νp(k!) − νp((k − l)!) +

⌊
k − l

p − 1

⌋
− χp−1(k − l), 1 ≤ l ≤ m,

assumes its unique minimum at l = m; this fact, together with Theorem 3, implies Theo-
rem 4.

By a well-known formula, we have

νp((k − l)!) =
⌊

k − l

p

⌋
+

⌊
k − l

p2

⌋
+ · · · .

The hypotheses of Theorem 4 imply that k−m = r(p−1) ≡ −r′ (mod p), where 1 ≤ r′ ≤ p

and m ≤ r′. It follows that �k−m+i
p � is constant for i = 0, 1, . . . , r′−1; i.e., �k−l

p � is constant
for l = m, m − 1, . . . , m − r′ + 1. Since r′ ≥ m, this implies that �k−l

p � is constant for
1 ≤ l ≤ m. Similarly, �k−l

pi � is constant for 1 ≤ l ≤ m. Therefore, νp

(
(k − l)!

)
is constant

for 1 ≤ l ≤ m.
Next we show that⌊

k − l

p − 1

⌋
− χp−1(k − l) >

⌊
k − m

p − 1

⌋
− χp−1(k − m), 1 ≤ l < m. (18)
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Since p− 1 divides k−m, k− l is not divisible by p− 1 for l = m− 1, m− 2, . . . , m− p+2,
and since m ≤ p, this implies all cases of (18) except m = p, l = 1. In this case we have

⌊
k − 1
p − 1

⌋
− χp−1(k − 1) = 1 +

⌊
k − p

p − 1

⌋
− χp−1(k − p),

and thus (18) holds in this case also. The proof is now complete.

We note that the generating function of the sum on the left hand side of (17) can be
derived by binomial inversion [5] in terms of Eulerian polynomials.

6. CONJECTURES

Empirical evidence suggests that formulas for τp(k) exist based on the residue of k

modulo p(p − 1). The following conjectures have been proved only in the cases p = 3 and
p = 5.

Conjecture 1:

(a) If k is divisible by 2p but not by p(p − 1) then τp(k) = νp(k).
(b) If k + 1 is divisible by 2p but not by p(p − 1) then τp(k) = νp(k + 1).

Conjecture 2:

For each odd prime p, there is a set Ap ⊆ {1, 2, . . . , p(p−1)−1} such that if k �≡ 0 or −1
(mod 2p) and k is not an odd multiple of p, then τp(k) > 0 if and only if k is congruent
modulo p(p − 1) to an element of Ap.

It usually seems to be true that under the conditions of Conjecture 2, for each i ∈ Ap,
there exists some integer up,i such that if k ≡ i (mod p(p − 1)) then τp(k) ≡ νp(k + up,i).

For example, Theorem 7 asserts that the conjectures hold for p = 3, with A3 = ∅, and
Theorem 8 asserts that the conjectures hold for p = 5 with A5 = {18} and u5,18 = 2.
Empirical evidence suggests that A7 = {16}, with u7,16 = 75. Here are the empirical
values of Ap for primes p from 11 to 23.

A11 = {14, 18, 73, 81, 93}
A13 = {82, 126, 148}
A17 = {37, 39, 62, 121, 179, 230, 234}
A19 = {85, 117, 119, 156, 196, 201, 203, 244, 279, 295, 299, 316, 320, 337}
A23 = {72, 128, 130, 145, 148, 170, 171, 188, 201, 210, 211, 232, 233, 234, 317, 325, 378, 466}
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