Combinatorial Proofs of Congruences

Ira M. Gessel

Department of Mathematics
Brandeis University

Joint Mathematics Meeting
January, 2010
In 1872 Julius Petersen published a proof of Fermat’s theorem \(a^p \equiv a \pmod{p} \), where \(p \) is a prime:
We take a wheel with \(p \) spokes and color each spoke in one of \(a \) colors. We call two colorings *equivalent* if one can be rotated into the other:
In 1872 Julius Petersen published a proof of Fermat’s theorem
\[a^p \equiv a \pmod{p}, \]
where \(p \) is a prime:
We take a wheel with \(p \) spokes and color each spoke in one of \(a \) colors. We call two colorings *equivalent* if one can be rotated into the other:
An equivalence class of colorings has size 1 if and only if every spoke has the same color, so there are a of these equivalence classes. Every other equivalence class contains p different colorings, so

$$a^p = \text{the total number of colorings}$$

$$= \text{the number of colorings in equivalence classes of size } p$$

$$+ \text{ the number of colorings in equivalence classes of size 1}$$

$$\equiv a \pmod{p}$$
An equivalence class of colorings has size 1 if and only if every spoke has the same color, so there are a of these equivalence classes. Every other equivalence class contains p different colorings, so

$$a^p = \text{the total number of colorings}$$

$$= \text{the number of colorings in equivalence classes of size } p$$

$$+ \text{the number of colorings in equivalence classes of size 1}$$

$$\equiv a \pmod{p}$$

How do we know that every equivalence class has size 1 or p?
An equivalence class of colorings has size 1 if and only if every spoke has the same color, so there are a of these equivalence classes. Every other equivalence class contains p different colorings, so

$$a^p = \text{the total number of colorings}$$

$$= \text{the number of colorings in equivalence classes of size } p$$

$$+ \text{the number of colorings in equivalence classes of size 1}$$

$$\equiv a \pmod{p}$$

How do we know that every equivalence class has size 1 or p?

The equivalence classes are orbits under the action of a cyclic group of order p, and we know that the size of any orbit divides the order of the group.
In general if a group of order p, where p is a prime, acts on a finite set S, then $|S|$ is congruent modulo p to the number of fixed points.
In general if a group of order p, where p is a prime, acts on a finite set S, then $|S|$ is congruent modulo p to the number of fixed points.

Note that the same is true for a group of order p^k.
In general if a group of order p, where p is a prime, acts on a finite set S, then $|S|$ is congruent modulo p to the number of fixed points.

Note that the same is true for a group of order p^k.

Another useful variation: If a group of order n acts on a set S then $|S|$ is congruent modulo n to the number of elements in orbits of size n.
We can get a variant of Petersen’s proof by using Burnside’s lemma (the Cauchy-Frobenius theorem) to count orbits:

\[\frac{1}{p} \left(a^p + (p-1)a \right) \]

so this quantity must be an integer.

But the results we get from Burnside’s lemma aren’t in general as nice as those we get from counting fixed points.
We can get a variant of Petersen’s proof by using Burnside’s lemma (the Cauchy-Frobenius theorem) to count orbits: We find that the number of orbits is

\[\frac{1}{p}(a^p + (p - 1)a), \]

so this quantity must be an integer.
We can get a variant of Petersen’s proof by using Burnside’s lemma (the Cauchy-Frobenius theorem) to count orbits: We find that the number of orbits is

\[\frac{1}{p} \left(a^p + (p - 1)a \right), \]

so this quantity must be an integer.

But the results we get from Burnside’s lemma aren’t in general as nice as those we get from counting fixed points.
Petersen also gave a similar proof of Wilson’s theorem

\[(p - 1)! + 1 \equiv 0 \pmod{p}.
\]
Petersen also gave a similar proof of Wilson’s theorem
\((p - 1)! + 1 \equiv 0 \pmod{p}\).

There are \((p - 1)!\) cyclic permutations of \(p\) points. The cyclic group \(C_p\) acts on them by conjugation, which we can view geometrically as rotation.
Petersen also gave a similar proof of Wilson’s theorem

\[(p - 1)! + 1 \equiv 0 \pmod{p}\].

There are \((p - 1)!\) cyclic permutations of \(p\) points. The cyclic group \(C_p\) acts on them by conjugation, which we can view geometrically as rotation

\[
\begin{align*}
\text{There are } p - 1 \text{ fixed cycles so } (p - 1)! &\equiv p - 1 \pmod{p}.
\end{align*}
\]
We can generalize the proof of Fermat’s to composite moduli.
We can generalize the proof of Fermat’s to composite moduli. If we take a wheel with p^k spokes and color each spoke in one of a colors, there are a^{p^k} colorings. There are $a^{p^{k-1}}$ colorings that are in orbits of size less than p^k, so

$$a^{p^k} \equiv a^{p^{k-1}} \pmod{p^k},$$

a form of Euler’s theorem.
We can generalize the proof of Fermat’s to composite moduli.

If we take a wheel with p^k spokes and color each spoke in one of a colors, there are a^{p^k} colorings. There are a^{p^k-1} colorings that are in orbits of size less than p^k, so

$$a^{p^k} \equiv a^{p^k-1} \pmod{p^k},$$

a form of Euler’s theorem.

More generally, we can show that if we take a wheel with n spokes, for any n, then the number of colorings in orbits of size n is $\sum_{d|n} \mu(d) a^{n/d}$, so

$$\sum_{d|n} \mu(d) a^{n/d} \equiv 0 \pmod{n}$$

(Gauss).
Another example of a combinatorial proof of a congruence is Lucas’s theorem:

If \(a = a_0 + a_1 p + \cdots + a_k p^k \) and \(b = b_0 + b_1 p + \cdots + b_k p^k \), where \(0 \leq a_i, b_i < p \) then

\[
\binom{a}{b} \equiv \binom{a_0}{b_0} \binom{a_1}{b_1} \cdots \binom{a_k}{b_k} \pmod{p}.
\]
It’s convenient to prove a slightly different form of Lucas’s theorem: If $0 \leq b, d < p$ then

\[
\binom{ap + b}{cp + d} \equiv \binom{a}{c} \binom{b}{d} \pmod{p}.
\]
It’s convenient to prove a slightly different form of Lucas’s theorem: If $0 \leq b, d < p$ then
\[
\binom{ap + b}{cp + d} \equiv \binom{a}{c} \binom{b}{d} \pmod{p}.
\]

To prove this we take $ap + b$ boxes arranged in a $p \times a$ rectangle with an additional $b < p$ boxes.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\hline
\hline
\hline
\end{array}
\]

\[p = 5\]
\[a = 4\]
\[b = 3\]

We choose $cp + d$ of the boxes, in $\binom{ap+b}{cp+d}$ ways.
We choose $cp + d$ of the boxes and mark them.

$p = 5$

$a = 4$

$b = 3$
We choose $cp + d$ of the boxes and mark them.

Now we rotate each of the a columns of p boxes independently. Each arrangement will be in an orbit of size divisible by p except for those arrangements that consist only of full and empty columns. Since b and d are less than p, we must choose d boxes from the b additional boxes, and then choose c whole columns from the a columns, which can be done in \(\binom{a}{c} \binom{b}{d} \) ways.
We choose \(cp + d \) of the boxes and mark them.

Now we rotate each of the \(a \) columns of \(p \) boxes independently. Each arrangement will be in an orbit of size divisible by \(p \) except for those arrangements that consist only of full and empty columns. Since \(b \) and \(d \) are less than \(p \), we must choose \(d \) boxes from the \(b \) additional boxes, and then choose \(c \) whole columns from the \(a \) columns, which can be done in \(\binom{a}{c} \binom{b}{d} \) ways.
The same argument shows that \(\binom{ap}{cp} \equiv \binom{a}{c} \pmod{p^2} \), since if we are choosing \(cp \) boxes from the \(p \times a \) rectangle, if there is one incomplete column then there must be at least two incomplete columns.
The same argument shows that $\binom{ap}{cp} \equiv \binom{a}{c} \pmod{p^2}$, since if we are choosing cp boxes from the $p \times a$ rectangle, if there is one incomplete column then there must be at least two incomplete columns.

In fact if $p \geq 5$ then $\binom{ap}{cp} \equiv \binom{a}{c} \pmod{p^3}$. The combinatorial approach reduces this to showing that $\binom{2p}{p} \equiv 2 \pmod{p^3}$. It’s probably impossible to prove this combinatorially, but here is a simple proof due to Richard Stanley.
\[
\binom{2p}{p} - 2 = \sum_{k=1}^{p-1} \binom{p}{k}^2 = \sum_{k=1}^{p-1} \left[\frac{p}{k} \binom{p-1}{k-1} \right]^2 \\
= p^2 \sum_{k=1}^{p-1} \frac{1}{k^2} \binom{p-1}{k-1}^2
\]

Since \(\binom{p-1}{k-1} \equiv \binom{-1}{k-1} = (-1)^{k-1} \pmod{p} \), it’s enough to show that \(\sum_{k=1}^{p-1} 1/k^2 \) is divisible by \(p \). But

\[
\sum_{k=1}^{p-1} \frac{1}{k^2} \equiv \sum_{k=1}^{p-1} k^2 = \frac{1}{6} p(2p-1)(p-1) \equiv 0 \pmod{p}
\]

if \(p \neq 2 \) or \(3 \).
The Catalan number \(C_n = \frac{1}{n+1} \binom{2n}{n} \) counts, among other things, binary trees with \(n \) internal vertices and \(n + 1 \) leaves. For example, if \(n = 3 \) one such tree is

![Binary tree diagram]
The Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$ counts, among other things, binary trees with n internal vertices and $n + 1$ leaves. For example, if $n = 3$ one such tree is

![Binary Tree Diagram]

When is C_n odd?
A group of order 2^n acts on the binary trees counted by C_n: For each internal vertex we can switch the two subtrees rooted at its children:

![Diagram of binary trees](image.png)

The size of every orbit will be a power of two, and the only orbits of size 1 are for trees in which every leaf is at the same level: So there are 2^k leaves for some k, so $n = 2^k - 1$. Conversely, if $n = 2^k - 1$ then there is exactly one orbit of size 1, so C_n is odd.
A group of order 2^n acts on the binary trees counted by C_n: For each internal vertex we can switch the two subtrees rooted at its children:

The size of every orbit will be a power of two, and the only orbits of size 1 are for trees in which every leaf is at the same level:
A group of order 2^n acts on the binary trees counted by C_n: For each internal vertex we can switch the two subtrees rooted at its children:

```
    ┌───┐
   ┤    ├
   └───┘
```

The size of every orbit will be a power of two, and the only orbits of size 1 are for trees in which every leave is at the same level:

```
    ┌───┐
   ┤    ├
    └───┘
```

So there are 2^k leaves for some k, so $n = 2^k - 1$. Conversely, if $n = 2^k - 1$ then there is exactly one orbit of size 1, so C_n is odd.
Another class of applications of the combinatorial method is to sequences that counting “labeled objects” like permutations or graphs. For example, the derangement number d_n is the number of permutations of $[n] = \{1, 2, \ldots, n\}$ with no fixed points:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_n</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>44</td>
<td>265</td>
<td>1854</td>
<td>14833</td>
</tr>
</tbody>
</table>

We think of a derangement as a set of cycles, each of length greater than 1:

$(1 \ 3 \ 6) \ (2 \ 5) \ (4 \ 7)$

The cyclic group C_n acts on the set of derangements of $[n + m]$ by cyclically permuting $1, 2, \ldots, n$:

For $n = 3$ a generator of C_3 takes $(1 \ 3 \ 6) \ (2 \ 5) \ (4 \ 7)$ to $(2 \ 1 \ 6) \ (3 \ 5) \ (4 \ 7)$
If a derangement has elements of $[n]$ and of $[m] + n = \{n + 1, n + 2, \ldots, n + m\}$ in the same cycle, then it will be in an orbit of size n. Thus $d_{m+n} - d_m d_n$ is divisible by n, i.e.,

$$d_{m+n} \equiv d_m d_n \pmod{n}.$$

For a prime modulus p, we have $d_p \equiv p - 1 \pmod{p}$, so

$$d_{m+p} \equiv (p - 1)d_m \equiv -d_m \pmod{p}.$$
The **Bell number** B_n is the number of partitions of an n-element set.

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_n</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>52</td>
<td>203</td>
<td>877</td>
<td>4140</td>
<td>21147</td>
</tr>
</tbody>
</table>

We will prove **Touchard’s congruence** $B_{n+p} \equiv B_{n+1} + B_n \pmod{p}$, where p is a prime.
The cyclic group C_p acts on partitions of $[p + m]$ by cyclically permuting $1, 2, \ldots, p$. Then B_{n+p} is congruent modulo p to the number of fixed partitions.
The cyclic group C_p acts on partitions of $[p + m]$ by cyclically permuting $1, 2, \ldots, p$. Then B_{n+p} is congruent modulo p to the number of fixed partitions.

There are two kinds of fixed partitions:

1. those in which $1, 2, \ldots, p$ are all in the same block
2. those in which $1, 2, \ldots, p$ are each in singleton blocks
The cyclic group C_p acts on partitions of $[p + m]$ by cyclically permuting $1, 2, \ldots, p$. Then B_{n+p} is congruent modulo p to the number of fixed partitions.

There are two kinds of fixed partitions:

1. those in which $1, 2, \ldots, p$ are all in the same block
2. those in which $1, 2, \ldots, p$ are each in singleton blocks

The number of partitions of type 1 is B_{n+1} since we can think of $1, 2, \ldots, p$ as being replaced by a single point.
The cyclic group C_p acts on partitions of $[p + m]$ by cyclically permuting $1, 2, \ldots, p$. Then B_{n+p} is congruent modulo p to the number of fixed partitions.

There are two kinds of fixed partitions:

1. those in which $1, 2, \ldots, p$ are all in the same block
2. those in which $1, 2, \ldots, p$ are each in singleton blocks

The number of partitions of type 1 is B_{n+1} since we can think of $1, 2, \ldots, p$ as being replaced by a single point.

The number of type 2 is B_n.
The cyclic group C_p acts on partitions of $[p + m]$ by cyclically permuting $1, 2, \ldots, p$. Then B_{n+p} is congruent modulo p to the number of fixed partitions.

There are two kinds of fixed partitions:

1. those in which $1, 2, \ldots, p$ are all in the same block
2. those in which $1, 2, \ldots, p$ are each in singleton blocks

The number of partitions of type 1 is B_{n+1} since we can think of $1, 2, \ldots, p$ as being replaced by a single point.

The number of type 2 is B_n.

So $B_{n+p} \equiv B_n + B_{n+1} \pmod{p}$.