Quantum Entanglement and the Geometry of Spacetime

Matthew Headrick
UMass Lowell Physics Colloquium
February 10, 2016
Black Hole Entropy

Bekenstein, Hawking ’74:

\[S = \frac{k_B c^3 a}{4 G_N \hbar} = k_B \frac{a}{4 l_P^2} \]

\(G_N \rightarrow \) gravity

\(\hbar \rightarrow \) quantum mechanics

\(k_B \rightarrow \) statistical mechanics

area of event horizon

Planck length

\(\sim 10^{-33} \text{ cm} \)

Mysteries:

What are the “atoms” of the black hole?

Why is \(S \propto a \)?
General relativity:
- Gravity is a manifestation of the curvature of spacetime
- Geometry of spacetime (metric $g_{\mu\nu}$) is dynamical

Einstein equation:
$$G_{\mu\nu} = 8\pi G_N T_{\mu\nu} - \Lambda g_{\mu\nu}$$

We know of many quantum theories of gravity (from string theory, . . .).
At long distances (compared to Planck length), they reduce to GR.
They have various
- numbers of dimensions
- types of matter fields
- values of Λ

Unfortunately, we don’t understand them well enough to directly answer the above questions.
Suppose we have a quantum theory of gravity in $d + 1$ dimensions ($d = 2, 3, \ldots$).

Let spacetime geometry fluctuate, fixing boundary conditions at infinity.

Let spacetime geometry fluctuate, fixing boundary conditions at infinity.

Closed quantum system.

Simplest solution to Einstein equation is *anti-de Sitter (AdS) spacetime*.

No matter ($T_{\mu \nu} = 0$).

Space is hyperbolic (Lobachevsky) space.

Boundary is infinitely far away, with infinite potential wall.

Light can reach boundary (and reflect back) in finite time.

Holographic DUALITIES
Holographic Dualities

Maldacena ’97:
Quantum gravity in $d + 1$ dimensions with AdS boundary conditions
= d dimensional ordinary quantum field theory (without gravity).
QFT “lives on the boundary”.
Map between the two theories is non-local.

QFT has a large number of strongly interacting fields:

$$N = \left(\frac{R}{l_P}\right)^{d-1} = \frac{R^{d-1}}{G_N \hbar} \gg 1$$
Holographic Dualities

<table>
<thead>
<tr>
<th>Quantum gravity</th>
<th>Quantum field theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{R^{d-1}}{G_N \hbar})</td>
<td>(N)</td>
</tr>
<tr>
<td>(\hbar \to 0)</td>
<td>(N \to \infty)</td>
</tr>
<tr>
<td>classical limit</td>
<td>thermodynamic limit</td>
</tr>
<tr>
<td>general relativity</td>
<td>macroscopic (collective) description</td>
</tr>
<tr>
<td>empty AdS</td>
<td>vacuum</td>
</tr>
<tr>
<td>[S = 0]</td>
<td></td>
</tr>
<tr>
<td>thermal gas of particles in AdS</td>
<td>[S = \mathcal{O}(1)]</td>
</tr>
<tr>
<td>confined thermal state</td>
<td></td>
</tr>
<tr>
<td>black hole</td>
<td>[S = \frac{a}{4G_N \hbar} = \mathcal{O}(N)]</td>
</tr>
<tr>
<td>deconfined plasma</td>
<td></td>
</tr>
</tbody>
</table>
This helps to understand black hole entropy.

But mysteries remain.

Nothing special happens at a black hole horizon.

What about other surfaces? Can their areas represent entropies?

Are there entropies that are intrinsic to a system --- not thermal?
Entanglement Entropy

Classical mechanics:
- definite state \rightarrow certain outcome for any measurement

Quantum mechanics:
- definite state \rightarrow uncertain outcomes for some measurements

Example: $|\uparrow\rangle$
- measurement of S_z definitely gives $+\frac{1}{2}\hbar$
- measurement of S_x gives $+\frac{1}{2}\hbar$ or $-\frac{1}{2}\hbar$ with equal probability

When only certain kinds of measurements are allowed, a definite (pure) state will **effectively** be indefinite (mixed).

Suppose a system has two parts, but we can only measure one.

Spin singlet state: $|AB\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle\right)$ $S_{AB} = 0$

To see that this is a pure state (superposition, not mixture, of $|\uparrow\rangle|\downarrow\rangle$ and $|\downarrow\rangle|\uparrow\rangle$) requires access to both A and B.

For an observer who only sees A, effective state is mixed:

$$\rho_A = \frac{1}{2} \left(|\uparrow\rangle\langle\uparrow| + |\downarrow\rangle\langle\downarrow|\right)$$ $S_A = k_B \ln 2$

In classical mechanics, if whole is in a definite state then each part is also: $S_A \leq S_{AB}$
In quantum field theories, spatial regions are highly entangled.

New way of thinking about QFTs.
Entanglement entropy S_A is a function of the state and the region A.

Reveals a lot about the theory:
- quantum criticality
- topological order
- renormalization-group monotones

Unfortunately, difficult to compute, even in simple theories.
Standard method is *replica trick*:
1. using path integral, compute *Rényi entropies*
 \[S_A(n) = \frac{1}{1-n} \ln \text{tr} \rho_A^n \quad (n = 2, 3, \ldots) \]
2. extrapolate to $n = 1$
 \[\lim_{n \to 1} S_A(n) = -\text{tr}(\rho_A \ln \rho_A) = S_A^{\Delta S_n(r)} \]

MH, Lawrence, Roberts ’12:
Showed that entanglement entropy is invariant under bosonization in 1+1 dimensions.

Agón, MH, Jafferis, Kasko ’13:
Calculated S_A for disk of radius r in 2+1 dimensional electromagnetism.
Black hole = thermal state

Maldacena ’01:
2 black holes joined by Einstein-Rosen bridge
= 2 entangled QFTs

\[S_A = \frac{a}{4G_N \hbar} \]

Ryu, Takayanagi ’06 proposed that, in general,

\[S_A = \frac{a}{4G_N \hbar} \text{ area of minimal surface between } A \text{ and } B \]

“Entanglement is the fabric of spacetime”

Simple & beautiful . . . widely applied . . . but is it right?
Quantum information theory is built into spacetime geometry.
Holographic entanglement also has a special property: “monogamy of mutual information”.

Holographic Entanglement Entropy

MH, Takayanagi ’07; Hayden, MH, Maloney ’11; MH ’13:
Holographic formula obeys all general properties of entanglement entropies.

Examples:

If full system is pure then $S_A = S_B$

Otherwise,

$S_A \neq S_B$

Strong subadditivity:

$$S_{AB} + S_{BC} \geq S_{ABC} + S_B$$

Examples:

\geq

$=$

\geq

\geq

$=$

$= S_{ABC} + S_B$
MH ’10:
- Explained how to apply replica trick to holographic theories.
- Debunked previous “derivation” of holographic formula.
- Showed that holographic formula predicts phase transition for separated regions.
- Confirmed using Euclidean quantum gravity & orbifold CFT techniques.

Lewkowycz, Maldacena ’13: General “derivation” of holographic formula.

\[
S_{AB} = S_A + S_B
\]

correlations mediated by \(O(1)\) confined degrees of freedom

\[
S_{AB} < S_A + S_B
\]

correlations mediated by \(O(N)\) elementary degrees of freedom
What about *time*?

Original (Ryu-Takayanagi) holographic formula assumes state is *static*.

Hubeny, Rangamani, Takayanagi ’07: For non-static states, replace *minimal* surface in bulk space with *extremal* surface in bulk spacetime.

Simple & beautiful . . . widely applied . . . but is it right?

Callan, He, MH ’12: Obeys strong subadditivity in examples.

Extremal surface goes behind horizons!

MH, Hubeny, Lawrence, Rangamani ’14: Nonetheless obeys causality. Implies that QFT state is encoded by (part of) spacetime behind horizon.

MH, Myers, Wien ’14: Proved that area of a *general* surface (not just extremal) is given by *differential entropy* in QFT.
Entanglement entropy in holographic theories:
• Enormous progress in recent years.
• Still many mysteries.
• Suggests a deep and general connection between entanglement and the geometry of spacetime.

(How) does spacetime itself emerge from quantum mechanics?

Stay tuned . . .