3 \textit{p-groups}

A \textit{p-group} is a finite group \(P \) of order \(p^k \) where \(k \geq 0 \). Note that every subgroup of a \(p \)-group is a \(p \)-group. When we want to exclude the trivial case \(k = 0 \) we say that \(P \) is a \textit{nontrivial} \(p \)-group. One of the most important properties of \(p \)-groups is that they have nontrivial centers:

\textbf{Theorem 3.1.} Every nontrivial \(p \)-group has a nontrivial center \((P \neq 1 \Rightarrow Z(P) \neq 1)\). Furthermore, every nontrivial normal subgroup \(N \) of \(P \) meets \(Z(P) \) nontrivially \((1 \neq N \leq P \Rightarrow N \cap Z(P) \neq 1)\).

\textit{Proof.} The second statement implies the first statement. So suppose that \(N \) is a nontrivial normal subgroup of \(P \). Then \(|N| \) is divisible by \(p \). The group \(P \) acts on the set \(N \) by conjugation:

\[g \cdot x = gxg^{-1} \]

This action has a fixed point, namely \(x = 1 \). [\(x \) is a \textit{fixed point} if \(g \cdot x = x \) for all \(g \) in the group. When the action is conjugation this is the same as saying that \(x \) commutes with every element of the group, i.e., \(x \in Z(P) \cap N \).]

However, we know that the number of fixed points is congruent modulo \(p \) to \(|N| \) which is congruent to 0. Therefore there must be at least \(p \) fixed points so \(|Z(P) \cap N| \geq p \). \(\square \)

\textbf{Corollary 3.2.} Given a \(p \)-group \(P \) of order \(p^k \) there exists an increasing sequence of normal subgroups

\[1 \triangleleft N_1 \triangleleft N_2 \triangleleft \cdots \triangleleft N_{k-1} \triangleleft P \]

so that \(|N_j| = p^j \) for all \(j \).

\textit{Proof.} If \(k = 1 \) there is nothing to prove so suppose that \(k \geq 2 \). By the theorem we know that the center of \(P \) is nontrivial. By Cauchy’s Theorem we know that \(Z(P) \) contains an element of order \(p \). Let \(N_1 \) be the cyclic subgroup of \(P \) generated by this central element. Then \(N_1 \triangleleft P \) and \(|N_1| = p \) so \(P/N_1 \) is a \(p \)-group of order \(p^{k-1} \). By induction \(P/N_1 \) has a normal series as above. The preimage in \(P \) of this normal series (together with \(N_1 \)) forms the desired normal series for \(P \). \(\square \)

\textbf{Corollary 3.3.} Every maximal proper subgroup of a \(p \)-group \(P \) is normal and has index \(p \).

\textit{Proof.} First of all note that if a proper subgroup \(M < P \) is maximal and normal then its index must be \(p \) since otherwise, by the corollary above, \(P/M \) has a subgroup of index \(p \) which corresponds to a subgroup \(Q \) of \(P \) so that \(M < Q < P \). Thus it suffices to show that every maximal proper subgroup of \(P \) is normal.

Take \(M < P \) maximal and let \(Z < P \) be a central subgroup of order \(p \). There are two cases.
1. If \(Z \subseteq M \) then \(M/Z < P/Z \) is maximal and thus normal by induction on \(|P| \). This implies \(M \lhd P \).

2. If \(Z \not\subseteq M \) then \(P = ZM = N(M) \) so \(M \lhd P \).

Given any group \(G \) its center \(Z(G) \) is an abelian normal subgroup of \(G \). For a \(p \)-group \(P \), \(Z(P) \) must be a product of cyclic \(p \)-groups. But what about \(P/Z(P) \)?

Lemma 3.4. For any group \(G \) the quotient \(G/Z(G) \) cannot be a nontrivial cyclic group. In particular \(|G : Z(G)| \) cannot be prime.

Proof. Suppose that \(G/Z(G) \) is a cyclic group generated by the element \(\bar{x} = xZ(G) \). Then the powers of \(x \) give a complete set of coset representative so every element of \(G \) can be written in the form \(g = x^nz \) where \(z \in Z(G) \). But then \(G \) is abelian and \(Z(G) = G \). \(\square \)

Combine this with Theorem 3.1 and we see that any group of order \(p^2 \) is abelian. [So it must be either \(\mathbb{Z}/p^2 \) or \(\mathbb{Z}/p \times \mathbb{Z}/p \).]

Proposition 3.5. Every nonabelian \(p \)-group has at least \(p^3 \) elements and the index of its center is at least \(p^2 \).

An example of a nonabelian 2-group of order \(2^3 = 8 \) is the **Dihedral group** \(D_8 \) which is define to be a group having 8 elements:

\[
D_8 = \{1, s, s^2, s^3, t, ts, ts^2, ts^3\}
\]

where \(t^2 = 1 = s^4 \) and \(tst = s^{-1} = s^3 \). A permutation representation of this group is given by: \(s = (1234), t = (14)(23) \). A geometric representation of \(D_8 \) is given by taking the symmetries of a square. A matrix representation is given by

\[
s = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad t = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

The center is \(D_8 \) is \(Z(D_8) = \langle s^2 \rangle = \{1, s^2\} \). (Prove it!) Note that the square of every element of \(D_8 \) is either \(s^2 \) or 1. This example can be generalized.

For any prime \(p \) let \(P \) be the group of order \(p^3 \) whose elements are given by \(a^ib^j \) where \(0 \leq i < p^2 \) and \(0 \leq j < p \) subject to the relations \(a^{p^2} = 1, b^p = 1 \) and \(bab^{-1} = a^{p+1} \). In other words, the multiplication rule in \(P \) is given by:

\[
(a^ib^j)(a^kb^\ell) = a^{i+k+jp}b^{j+\ell}
\]

Then the center of \(P \) is generated by \(a^p \).

There are exactly two nonisomorphic nonabelian groups of order \(p^3 \). Alperin-Bell prove this in the case of odd primes\(^1\) and Rotman proves this

\(^1\)For an odd prime \(p \) the second nonabelian group of order \(p^3 \) has the property that every nontrivial element has order \(p \) [AB, Prop 8.11]. We will discuss this example later.
for $p = 2$. For $p = 2$ the other group is the group of **quaternions**. This is defined to be the group Q generated by a, b subject to the relations $a^4 = 1$, $b^2 = a^2$ and $bab^{-1} = a^{-1} = a^3$. If we let $c = ab$ we get a familiar list of identities:

$$ab = c, \ bc = a, \ ca = b, \ ba = c^{-1}, \ ac = b^{-1}, \ cb = a^{-1}$$

These are six of the elements of Q. They all have order 4. The other two are 1 and $a^2 = b^2 = c^2$ which has order 2.

Theorem 3.6. Every nonabelian group of order 8 is isomorphic to either D_8 or Q.

Proof. Let P be a nonabelian group of order 8. We know that P contains an element of order 4. [Otherwise all nontrivial elements of P have order 2, making P abelian.] Call that element a and let $A = \langle a \rangle = \{1, a, a^2, a^3\}$ be the subgroup generated by a. Then A is normal since it has index 2. Let b be any element of $P - A$. Then $\phi_b(a) = bab^{-1} = a^3$. [Since ϕ_b is an automorphism, it take elements of order 4 to elements of order 4 and a^2 has order 2. Also $bab^{-1} \neq a$ since this would make P abelian.]

Since $b^2 \in A$ there are two cases. Either $b^2 = 1$ or $b^2 = a^2$. [b^2 cannot be a or a^3 since that would make P cyclic and thus abelian.] In the first case, P is isomorphic to D_8 with a, b mapping to s, t. It the second case P is isomorphic to Q with a, b mapping to elements of Q with the same name. \(\square\)

Elementary abelian p-groups

A p-group is called **elementary abelian** if it is abelian and every nontrivial element has order p.\(^2\) This is the same as saying that P is a \mathbb{Z}/p-module.\(^3\) Since \mathbb{Z}/p is a fields, P is a vector space over \mathbb{Z}/p. Thus we get the following.

Theorem 3.7. Suppose that P is an elementary abelian group of order p^n. Then

1. $P \cong (\mathbb{Z}/p)^n = \mathbb{Z}/p \times \cdots \times \mathbb{Z}/p$
2. Every minimal generating set for P has n elements.

Exercise 1: If P is a nonabelian group of order p^3 then show that $P/Z(P)$ is elementary abelian of order p^2.

Exercise 2: Let $\Phi(P)$ be the intersection of all maximal subgroups of a p-group P. [$\Phi(P)$ is called the **Frattini subgroup** P.] Show that $P/\Phi(P)$ is elementary abelian.

\(^2\)If $p = 2$ the second statement implies the first, i.e., if every nontrivial element has order 2 the group is abelian. For odd p this is not true. [See the previous footnote.]

\(^3\)A \mathbb{Z}/n-module is an abelian group in which every element has order dividing n.

3