6 Solvable groups

Definition 6.1. A group G is solvable if it has a subnormal series

$$G = G_0 \geq G_1 \geq G_2 \geq \cdots \geq G_n = 1$$

where each quotient G_i/G_{i+1} is an abelian group. We will call this a solvable series.

For example, any abelian group is solvable even if it is infinite. Another more interesting example is the symmetric group S_4 which has the solvable series:

$$S_4 \triangleright A_4 \triangleright K \triangleright 1$$

with quotients $S_4/A_4 \cong \mathbb{Z}/2$, $A_4/K \cong \mathbb{Z}/3$ and $K/1 = K \cong \mathbb{Z}/2 \times \mathbb{Z}/2$ where K is the Klein 4-group given by:

$$K = \{1, (12)(34), (13)(24), (14)(23)\}$$

Since these are all of the elements of S_4 of cycle type $(ab)(cd)$, K is normal in S_4.

Some other easy theorems:

Theorem 6.2. Every finite p-group is solvable.

Proof. We already proved that every finite p-group has a normal series where each quotient group is cyclic of order p. □

Theorem 6.3. If $H \triangleleft G$ and both H and G/H are solvable then G is solvable.

Proof. This is obvious. Let $\phi : G \rightarrow Q = G/H$ be the quotient map. Then a solvable series for G is given by:

$$G = \phi^{-1}(Q_0) \geq \phi^{-1}(Q_1) \geq \cdots \geq \phi^{-1}(Q_n) = H = H_0 \geq H_1 \geq \cdots \geq H_m = 1$$

where $Q = Q_0 \geq \cdots \geq Q_n = 1$ and $H = H_0 \geq \cdots \geq H_m = 1$ are solvable series for Q, H. □

Corollary 6.4. If G and H are solvable then so is $G \times H$.

If G is a solvable group it has a canonical subnormal series with abelian quotients. This is the derived series of G:

$$G \geq G' \geq G'' \geq G''' \geq \cdots$$

Recall that the commutator subgroup $G' = [G, G]$ is the subgroup of G generated by all commutators $[g, h] = ghg^{-1}h^{-1} = \phi_g(h)h^{-1}$ and $G'' = (G')'$, $G''' = ((G')')'$, etc. We use the shorthand $G^{(n)}$ when this is done n times so, e.g., $G^{(4)} = G^{''''}$. We recall some basic properties of commutator subgroups.
Proposition 6.5. For any group G we have:

1. $G' \trianglelefteq G$.\(^1\)
2. G/G' is abelian. More generally,
3. G/H is abelian iff $H \supseteq G'$.\(^2\)
4. $H' \leq G'$ if $H \leq G$.\(^3\)

We will see later that the derived series is a normal series. However, it is obviously subnormal by 6.5.1 and we have:

Theorem 6.6. G is solvable if and only if $G^{(n)} = 1$ for some n.

Proof. It is enough to show that each G_k in a solvable series of G contains $G^{(k)}$. The first step: $G' \leq G_1$ follows from 6.5.3 above. If $G^{(k)} \leq G_k$ then $G^{(k+1)} = (G^{(k)})' \leq (G_k)' \leq G_{k+1}$ by 6.5.3 since G_k/G_{k+1} is abelian. \(\blacksquare\)

Theorem 6.7. Every subgroup of a solvable group is solvable.

Proof. By Prop. 6.5.4 we have: $H^{(n)} \leq G^{(n)} \leq 1$. \(\blacksquare\)

Lemma 6.8. For any homomorphism $f : G \to H$ we have $f(G') = f(G)' \leq H'$. In particular, $\phi(G') = G'$ for any automorphism ϕ of G.

Proof. f sends the generators of G' to the generators of $f(G)'$ since
\[
f([a, b]) = f(aba^{-1}b^{-1}) = f(a)f(b)f(a)^{-1}f(b)^{-1} = [f(a), f(b)]
\]

\(\blacksquare\)

Theorem 6.9. Every quotient group of a solvable group is solvable.

Proof. Let $f : G \to Q$ be an epimorphism. Then $Q^{(n)} = f(G^{(n)}) = 1$. \(\blacksquare\)

Definition 6.10. A subgroup H of G is called characteristic if $\phi(H) = H$ for every automorphism ϕ of G. We write $H \text{ char } G$.

Examples of characteristic subgroups:

1. G' char G
2. $Z(G)$ char G
3. $\Phi(G)$ char G [\(\Phi(G)\), the Frattini subgroup of G is the intersection of all maximal proper subgroups of G. (\(\Phi(G) = G\) is there are none.)]
4. nA char A if A is an additive group.

\(^1\)A conjugate of a commutator is a commutator: $[a, b]^c = [a^c, b^c]$ where $x^c = c^{-1}xc$.

\(^2\)\(G/H\) is abelian iff for each a, b we have $Hab = Hba \leftrightarrow H[a, b] = H \leftrightarrow [a, b] \subseteq H$.

\(^3\)The generators $[h_1, h_2]$ of H' form a subset of the set of generators of G'.
These are all obviously characteristic since they are intrinsically defined. Another not so obvious example is: A_n char S_n. This is because A_n is generated by all elements of order 3 in S_n. This is an intrinsic description of A_n since automorphisms take elements of order 3 to elements of order 3.

Lemma 6.11.
1. H char G implies $H \trianglelefteq G$
2. K char H char G implies K char G
3. K char $N \trianglelefteq G$ implies $K \trianglelefteq G$

HW3.ex 03: Give a counterexample to the statement: $N \trianglelefteq K$ char $G \Rightarrow N \trianglelefteq G$.

Proof.
1. Characteristic subgroups of G are invariant under all automorphisms of G. Normal subgroups are only required to be invariant under inner automorphisms.
3. Any inner automorphism of G leaves N invariant and the induced automorphism of N leaves K invariant.

Theorem 6.12. The higher commutators $G^{(k)}$ are characteristic subgroups of G. In particular, if G is solvable, the derived series is solvable series which is also a normal series.

Instead of going from top to bottom we can find a solvable series for a solvable group from bottom to top using the following theorem.

Theorem 6.13. Any minimal normal subgroup of a solvable group is elementary abelian.

Proof. Suppose that $N \trianglelefteq G$ is minimal normal. Then N is solvable by 6.7. Consequently, $N' < N$. But N' char $N \Rightarrow N' \trianglelefteq G$ so $N' = 1$, i.e., N is abelian. If p divides $|N|$ then pN is a characteristic proper subgroup of N so $pN \trianglelefteq G$ and must be trivial. Thus N is an elementary abelian p-group.

HW3.ex 04: If S, T are solvable subgroups of G and $S \trianglelefteq G$ then show that ST is solvable.