MATH 101B: HOMEWORK

4. Homework 04

The following problems are due Thursday (3/1/7). The strict deadline is 1:30pm Friday.

(1) Show that unique factorization domains (UFDs) are integrally closed.

(2) Show that the integral closure of \(\mathbb{Z}[\sqrt{5}] \) (in its fraction field) is \(\mathbb{Z}[\alpha] \) where

\[
\alpha = \frac{1 + \sqrt{5}}{2}
\]

(3) Combining these we see that \(\mathbb{Z}[\sqrt{5}] \) is not a UFD. Find a number which can be written in two ways as a product of irreducible elements. [Look at the proof of problem 1 and see where it fails for the element \(\alpha \) in problem 2.]

(4) If \(E \) is a finite separable extension of \(K \) and \(\alpha \in E \) show that the trace \(\text{Tr}_{E/K}(\alpha) \) is equal to the trace of the \(K \) linear endomorphism of \(E \) given by multiplication by \(\alpha \). [Show that the eigenvalues of this linear transformation are the Galois conjugates of \(\alpha \) and each eigenvalue has the same multiplicity.]

Date: February 15, 2007.