6. Homework 06

The following problems are due Thursday (3/22/7). The strict deadline is 1:30pm Friday.

Assume R, M are both Noetherian.

(1) Show that for any ideal I in R there are only finitely many minimal primes containing I. [Take a maximal counterexample.]

(2) Suppose that p is a prime and $n > 0$. Let

$$p^{(n)}M := p^n M_p | M$$

Show that this is a p-primary submodule of M.

(3) If $\phi : R \to S$ is a homomorphism of Noetherian rings and M is an S-module then show that

$$\text{ass}_R(M) = \phi^*(\text{ass}_S(M))$$

where $\phi^* : \text{Spec}(S) \to \text{Spec}(R)$ is the map induced by ϕ.

\(\text{Date: March 15, 2007.}\)