The following problems was due Thursday (3/22/7).

Assume R, M are both Noetherian.

1. **Show that for any ideal I in R there are only finitely many minimal primes containing I.** [Take a maximal counterexample.]

 Let $M = R/I$. Then $I \subseteq \mathfrak{p}$ iff $M_{\mathfrak{p}} \neq 0$. (Proof: $M_{\mathfrak{p}} = 0$ iff $1 \sim 0$ in $M_{\mathfrak{p}}$ iff $\exists s \notin \mathfrak{p}$ s.t. $s = 0$ in M iff $s \in I$.)

 Therefore, the minimal primes containing I are exactly the minimal supporting primes of R/I which are the same as the minimal associated primes. We proved that there are only finitely many of these.

2. **Suppose that \mathfrak{p} is a prime and $n > 0$. Let**

 $$\mathfrak{p}^{(n)}M := \mathfrak{p}^nM|_M$$

 Show that this is a \mathfrak{p}-primary submodule of M.

 Let $N = \mathfrak{p}^{(n)}M$. Then, by definition, N is the inverse image of $\mathfrak{p}^nM_{\mathfrak{p}}$ in M. So, M/N is isomorphic to an R-submodule of $M_{\mathfrak{p}}/\mathfrak{p}^nM_{\mathfrak{p}}$. So, it suffices to show that \mathfrak{p} is the only associated prime of $M_{\mathfrak{p}}/\mathfrak{p}^nM_{\mathfrak{p}}$.

 In $M_{\mathfrak{p}}$ each element $s \in S = R\setminus \mathfrak{p}$ act as isomorphisms (with inverse $s^{-1} \in R_{\mathfrak{p}}$). This means that on $M_{\mathfrak{p}}$ and more generally on any $R_{\mathfrak{p}}$-module, when considered as an R-module, the annihilator of any nonzero element will be disjoint from S, i.e., $ann_R(x) \subseteq \mathfrak{p}$. On the other hand \mathfrak{p} annihilates the entire module $\mathfrak{p}^kM_{\mathfrak{p}}/\mathfrak{p}^{k+1}M_{\mathfrak{p}}$. So, every nonzero element x will have $ann_R(x) = \mathfrak{p}$. This means that \mathfrak{p} is the only associated prime (in R) of $Q_k = \mathfrak{p}^kM_{\mathfrak{p}}/\mathfrak{p}^{k+1}M_{\mathfrak{p}}$. But, $Q = M_{\mathfrak{p}}/\mathfrak{p}^nM_{\mathfrak{p}}$ is an extension of the quotients Q_k. So, \mathfrak{p} is the only associated prime of Q. Since M/N is a submodule of Q, \mathfrak{p} is also the only prime associated to M/N. So, N is \mathfrak{p}-primary.

3. **If $\phi : R \to S$ is a homomorphism of Noetherian rings and M is an S-module then show that**

 $$\text{ass}_R(M) = \phi^*(\text{ass}_S(M))$$

 where $\phi^* : \text{Spec}(S) \to \text{Spec}(R)$ is the map induced by ϕ. ($\phi^*(\mathfrak{p}) = \phi^{-1}(\mathfrak{p})$)

 Suppose first that M has only one associated prime in S, call it \mathfrak{p}. Then \mathfrak{p} is the set of zero divisors of M and every zero divisor acts nilpotently on M in the sense that a power of it annihilates M. Then $\mathfrak{q} = \phi^*(\mathfrak{p})$ is the set of zero divisors of M in R. And each element of \mathfrak{q} acts nilpotently on M. This means that $\text{ass}_R(M) = \{\mathfrak{q}\}$. So, the theorem is true in this case.

 Let $0 = \bigcap Q_i$ be a primary decomposition of $0 \subseteq M$ as an S-submodule. Suppose that Q_i is \mathfrak{p}_i-primary. Then

 $$\text{ass}_S(M/Q_i) = \{\mathfrak{p}_i\} \Rightarrow \text{ass}_R(M/Q_i) = \{\mathfrak{q}_i\}$$

 where $\mathfrak{q}_i = \phi^*(\mathfrak{p}_i)$ by the argument above. This implies that $0 = \bigcap Q_i$ is also a primary decomposition of 0 as an R-submodule of M. So,

 $$\text{ass}_R(M) = \bigcup \text{ass}_R(M/Q_i) = \{\mathfrak{q}_1, \cdots, \mathfrak{q}_n\} = \phi^*(\text{ass}_S(M))$$