1. The group ring $k[G]$

The main idea is that representations of a group G over a field k are
“the same” as modules over the group ring $k[G]$. First I defined both
terms.

1.1. Representations of groups.

Definition 1.1. A representation of a group G over a field k is defined to be a group homomorphism

$$\rho : G \rightarrow \text{Aut}_k(V)$$

where V is a vector space over k.

Here $\text{Aut}_k(V)$ is the group of k-linear automorphisms of V. This also written as $GL_k(V)$. This is the group of units of the ring $\text{End}_k(V) = \text{Hom}_k(V, V)$ which, as I explained before, is a ring with addition defined pointwise and multiplication given by composition. If $\dim_k(V) = d$ then $\text{Aut}_k(V) \cong \text{Aut}_k(k^d) = GL_d(k)$ which can also be described as the group of units of the ring $\text{Mat}_d(k)$ or as:

$$GL_d(k) = \{ A \in \text{Mat}_d(k) \mid \det(A) \neq 0 \}$$

d = \dim_k(V) is called the dimension of the representation ρ.

1.1.1. examples.

Example 1.2. The first example I gave was the trivial representation.
This is usually defined to be the one dimensional representation $V = k$
with trivial action of the group G (which can be arbitrary). Trivial
action means that $\rho(\sigma) = 1 = \text{id}_V$ for all $\sigma \in G$.

In the next example, I pointed out that the group G needs to be
written multiplicatively no matter what.

Example 1.3. Let $G = \mathbb{Z}/3$. Written multiplicatively, the elements
are $1, \sigma, \sigma^2$. Let $k = \mathbb{R}$ and let $V = \mathbb{R}^2$ with $\rho(\sigma)$ defined to be rotation
by $120^\circ = 2\pi/3$. I.e.,

$$\rho(\sigma) = \begin{pmatrix} -1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix}$$

Example 1.4. Suppose that E is a field extension of k and $G = \text{Gal}(E/k)$. Then G acts on E by k-linear transformations. This gives a representation:

$$\rho : G \hookrightarrow \text{Aut}_k(E)$$

Note that this map is an inclusion by definition of “Galois group.”
1.1.2. axioms. In an elementary discussion of group representations I would write a list of axioms as a definition. However, they are just longwinded explanations of what it means for \(\rho : G \rightarrow \text{Aut}_k(V) \) to be a group homomorphism. The only advantage is that you don’t need to assume that \(\rho(\sigma) \) is an automorphism. Here are the axioms. (I switched the order of (2) and (3) in the lecture.)

1. \(\rho(1) = 1 \) \quad \forall v \in V \quad 1v = v \)
2. \(\rho(\sigma \tau) = \rho(\sigma) \rho(\tau) \forall \sigma, \tau \in G \) \quad \forall v \in V \quad (\sigma \tau)v = \sigma(\tau v) \)
3. \(\rho(\sigma) \) is \(k \)-linear \quad \forall \sigma \in G \quad \sigma(av + bw) = a\sigma v + b\sigma w \quad \forall v, w \in V, a, b \in k \)

The first two conditions say that \(\rho \) is an action of \(G \) on \(V \). Actions are usually written by juxtaposition:

\[\sigma v := \rho(\sigma)(v) \]

The third condition says that the action is \(k \)-linear. So, together, the axioms say that a representation of \(G \) is a \(k \)-linear action of \(G \) on a vector space \(V \).

1.2. Modules over \(k[G] \). The group ring \(k[G] \) is defined to be the set of all finite \(k \) linear combinations of elements of \(G \): \(\sum a_\sigma \sigma \) where \(a_\sigma \in k \) for all \(\sigma \in G \) and \(a_\sigma = 0 \) for almost all \(\sigma \).

For example, \(\mathbb{R}[\mathbb{Z}/3] \) is the set of all linear combinations

\[x + y\sigma + z\sigma^2 \]

where \(x, y, z \in \mathbb{R} \). I.e., \(\mathbb{R}[\mathbb{Z}/3] \cong \mathbb{R}^3 \). In general \(k[G] \) is a vector space over \(k \) with \(G \) as a basis.

Multiplication in \(k[G] \) is given by

\[\left(\sum a_\sigma \sigma \right) \left(\sum b_\tau \tau \right) = \left(\sum c_\lambda \right) \lambda \]

where \(c_\lambda \in G \) can be given in three different ways:

\[c_\lambda = \sum_{\sigma \tau = \lambda} a_\sigma b_\tau = \sum_{\sigma \in G} a_\sigma b_{\sigma^{-1}\lambda} = \sum_{\tau \in G} a_{\lambda \tau^{-1}} b_\tau \]

Proposition 1.5. \(k[G] \) is a \(k \)-algebra.

This is straightforward and tedious. So, I didn’t prove it. But I did explain what it means and why it is important.

Recall that an algebra over \(k \) is a ring which contains \(k \) in its center. The center \(Z(R) \) of a (noncommutative) ring \(R \) is defined to be the set of elements of \(R \) which commute with all the other elements:

\[Z(R) := \{ x \in R \mid xy = yx \forall y \in R \} \]

\(Z(R) \) is a subring of \(R \).
The center is important for the following reason. Suppose that M is a (left) R-module. Then each element $r \in R$ acts on M by left multiplication λ_r

$$
\lambda_r : M \to M, \quad \lambda_r(x) = rx
$$

This is a homomorphism of $Z(R)$-modules since:

$$
\lambda_r(ax) = rax = arx = a\lambda_r(x) \quad \forall a \in Z(R)
$$

Thus the action of R on M gives a ring homomorphism:

$$
\rho : R \to \text{End}_{Z(R)}(M)
$$

Getting back to $k[G]$, suppose that M is a $k[G]$-module. Then the action of $k[G]$ on M is k-linear since k is in the center of $k[G]$. So, we get a ring homomorphism

$$
\rho : k[G] \to \text{End}_k(M)
$$

This restricts to a group homomorphism

$$
\rho|G : G \to \text{Aut}_k(M)
$$

I pointed out that, in general, any ring homomorphism $\phi : R \to S$ will induce a group homomorphism $U(R) \to U(S)$ where $U(R)$ is the group of units of R. And I pointed out earlier that $\text{Aut}_k(M)$ is the group of units of $\text{End}_k(M)$. G is contained in the group of units of $k[G]$. (An interesting related question is: Which finite groups occur as groups of units of rings?)

This discussion shows that a $k[G]$-module M gives, by restriction, a representation of the group G on the k-vector space M. Conversely, suppose that

$$
\rho : G \to \text{Aut}_k(V)
$$

is a group representation. Then we can extend ρ to a ring homomorphism

$$
\overline{\rho} : k[G] \to \text{End}_k(V)
$$

by the simple formula

$$
\overline{\rho} \left(\sum a_\sigma \sigma \right) = \sum a_\sigma \rho(\sigma)
$$

When we say that a representation of a group G is “the same” as a $k[G]$-module we are talking about this correspondence. The vector space V is also called a G-module. So, it would be more accurate to say that a G-module is the same as a $k[G]$-module.

Corollary 1.6. (1) Any group representation $\rho : G \to \text{Aut}_k(V)$ extends uniquely to a ring homomorphism $\overline{\rho} : k[G] \to \text{End}_k(V)$ making V into a $k[G]$-module.
(2) For any $k[G]$-module M, the action of $k[G]$ on M restricts to give a group representation $G \to \text{Aut}_k(M)$.

(3) These two operations are inverse to each other in the sense that ρ is the restriction of $\overline{\rho}$ and an action of the ring $k[G]$ is the unique extension of its restriction to G.

There are some conceptual differences between the group representation and the corresponding $k[G]$-module. For example, the module might not be faithful even if the group representation is:

Definition 1.7. A group representation $\rho : G \to \text{Aut}_k(V)$ is called faithful if only the trivial element of G acts as the identity on V. I.e., if the kernel of ρ is trivial. An R-module M is called faithful if the annihilator of M is zero. ($\text{ann}(M) = \{ r \in R | rx = 0 \ \forall x \in M \}$).

These two definitions do not agree. For example, take the representation

$$\rho : \mathbb{Z}/3 \hookrightarrow GL_2(\mathbb{R})$$

which we discussed earlier. This is faithful. But the extension to a ring homomorphism

$$\overline{\rho} : \mathbb{R}[\mathbb{Z}/3] \to \text{Mat}_2(\mathbb{R})$$

is not a monomorphism since $1 + \sigma + \sigma^2$ is in its kernel.

1.3. **Semisimplicity of $k[G]$**. The main theorem about $k[G]$ is the following.

Theorem 1.8 (Maschke). If G is a finite group of order $|G| = n$ and k is a field with $\text{char} \ k \nmid n$ (or $\text{char} \ k = 0$) then $k[G]$ is semisimple.

Instead of saying $\text{char} \ k$ is either 0 or a prime not dividing n, I will say that $1/n \in k$. By the Wedderburn structure theorem we get the following.

Corollary 1.9. If $1/|G| \in k$ then

$$k[G] \cong \text{Mat}_{d_1}(D_1) \times \cdots \times \text{Mat}_{d_h}(D_h)$$

where D_i are finite dimensional division algebras over k.

Example 1.10.

$$\mathbb{R}[\mathbb{Z}/3] \cong \mathbb{R} \times \mathbb{C}$$

In general, if G is abelian, then the numbers d_i must all be 1 and D_i must be finite field extensions of k.

1.3.1. homomorphisms. In order to prove Maschke’s theorem, we need to talk about homomorphisms of G-modules. We can define these to be the same as homomorphisms of $k[G]$-modules. Then the following is a proposition. (Or, we can take the following as the definition of a G-module homomorphism, in which case the proposition is that G-module homomorphisms are the same as homomorphisms of $k[G]$-modules.)

Proposition 1.11. Suppose that V, W are $k[G]$-modules. Then a k-linear mapping $\phi : V \rightarrow W$ is a homomorphism of $k[G]$-modules if and only if it commutes with the action of G. I.e., if

$$\sigma(\phi(v)) = \phi(\sigma v)$$

for all $\sigma \in G$.

Proof. Any homomorphism of $k[G]$-modules will commute with the action of $k[G]$ and therefore with the action of $G \subset k[G]$. Conversely, if $\phi : V \rightarrow W$ commutes with the action of G then, for any $\sum a_\sigma \sigma \in k[G]$, we have

$$\phi \left(\sum_{\sigma \in G} a_\sigma \sigma v \right) = \sum_{\sigma \in G} a_\sigma \phi(\sigma v) = \sum_{\sigma \in G} a_\sigma \sigma \phi(v) = \left(\sum_{\sigma \in G} a_\sigma \sigma \right) \phi(v)$$

So, ϕ is a homomorphism of $k[G]$-modules. □

We also have the following Proposition/Definition of a G-submodule.

Proposition 1.12. A subset W of a G-module V over k is a $k[G]$-submodule (and we call it a G-submodule) if and only if

1. W is a vector subspace of V and
2. W is invariant under the action of G. I.e., $\sigma W \subseteq W$ for all $\sigma \in G$.

Proof of Maschke’s Theorem. Suppose that V is a finitely generated G-module and W is any G-submodule of V. Then we want to show that W is a direct summand of V. This is one of the characterizations of semisimple modules. This will prove that all f.g. $k[G]$-modules are semisimple and therefore $k[G]$ is a semisimple ring.

Since W is a submodule of V, it is in particular a vector subspace of V. So, there is a linear projection map $\phi : V \rightarrow W$ so that $\phi|W = id_W$. If ϕ is a homomorphism of G-modules, then $V = W \oplus \ker \phi$ and W would split from V. So, we would be done. If ϕ is not a G-homomorphism, we can make it into a G-homomorphism by “averaging over the group,” i.e., by replacing it with $\psi = \frac{1}{n} \sum \lambda_{\sigma^{-1}} \circ \phi \circ \lambda_\sigma$.

First, I claim that $\psi|W = id_W$. To see this take any $w \in W$. Then $\sigma w \in W$. So, $\phi(\sigma w) = \sigma w$ and

$$
\psi(w) = \frac{1}{n} \sum_{\sigma \in G} \sigma^{-1} \phi(\sigma w) = \frac{1}{n} \sum_{\sigma \in G} \sigma^{-1}(\sigma w) = w
$$

Next I claim that ψ is a homomorphism of G-modules. To show this take any $\tau \in G$ and $v \in V$. Then

$$
\psi(\tau v) = \frac{1}{n} \sum_{\sigma \in G} \sigma^{-1} \phi(\sigma \tau v) = \frac{1}{n} \sum_{\alpha \beta = \tau} \alpha \phi(\beta v)
$$

$$
= \frac{1}{n} \sum_{\sigma \in G} \tau \sigma^{-1} \phi(\sigma v) = \tau \psi(v)
$$

So, ψ gives a splitting of V as required. \qed

1.3.2. $\mathbb{R}[\mathbb{Z}/3]$. I gave a longwinded explanation of Example 1.10 using the universal property of the group ring $k[G]$. In these notes, I will just summarize this property in one equation. If R is any k-algebra and $U(R)$ is the group of units of R, then:

$$
\text{Hom}_{k\text{-alg}}(k[G], R) \cong \text{Hom}_{\text{grp}}(G, U(R))
$$

The isomorphism is given by restriction and linear extension.

The isomorphism $\mathbb{R}[\mathbb{Z}/3] \cong \mathbb{R} \times \mathbb{C}$ is given by the mapping:

$$
\phi : \mathbb{Z}/3 \to \mathbb{R} \times \mathbb{C}
$$

which sends the generator σ to $(1, \omega)$ where ω is a primitive third root of unity. Since $(1, 0), (1, \omega), (1, \bar{\omega})$ are linearly independent over \mathbb{R}, the linear extension $\overline{\phi}$ of ϕ is an isomorphism of \mathbb{R}-algebras.

1.3.3. group rings over \mathbb{C}. We will specialize to the case $k = \mathbb{C}$. In that case, there are no finite dimensional division algebras over \mathbb{C} (Part C, Theorem 3.12). So, we get only matrix algebras:

Corollary 1.13. If G is any finite group then

$$
\mathbb{C}[G] \cong \text{Mat}_{d_1}(\mathbb{C}) \times \cdots \times \text{Mat}_{d_k}(\mathbb{C})
$$

In particular, $n = |G| = \sum d_i^2$.

Example 1.14. If G is a finite abelian group of order n then $\mathbb{C}[G] \cong \mathbb{C}^n$.
Example 1.15. Take $G = S_3$, the symmetric group on 3 letters. Since this group is nonabelian, the numbers d_i cannot all be equal to 1. But the only way that 6 can be written as a sum of squares, not all 1, is $6 = 1 + 1 + 4$. Therefore,

$$\mathbb{C}[S_3] \cong \mathbb{C} \times \mathbb{C} \times \text{Mat}_2(\mathbb{C})$$

This can be viewed as a subalgebra of $\text{Mat}_4(\mathbb{C})$ given by

$$\begin{pmatrix} * & 0 & 0 & 0 \\ 0 & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix}$$

Each star (*) represents an independent complex variable. In this description, it is easy to visualize what are the simple factors $\text{Mat}_4(\mathbb{C})$ given by the Wedderburn structure theorem. But what are the corresponding factors of the group ring $\mathbb{C}[G]$?

1.4. idempotents. Suppose that $R = R_1 \times R_2 \times R_3$ is a product of three subrings. Then the unity of R decomposes as $1 = (1, 1, 1)$. This can be written as a sum of unit vectors:

$$1 = (1, 0, 0) + (0, 1, 0) + (0, 0, 1) = e_1 + e_2 + e_3$$

This is a decomposition of unity (1) as a sum of central, orthogonal idempotents e_i.

Recall that idempotent means that $e_i^2 = e_i$ for all i. Also, 0 is not considered to be an idempotent. Orthogonal means that $e_i e_j = 0$ if $i \neq j$. Central means that $e_i \in Z(R)$.

Theorem 1.16. A ring R can be written as a product of b subrings R_1, R_2, \ldots, R_b iff $1 \in R$ can be written as a sum of b central, orthogonal idempotents and, in that case, $R_i = e_i R$.

A central idempotent e is called primitive if it cannot be written as a sum of two central orthogonal idempotents.

Corollary 1.17. The number of factors $R_i = e_i R$ is maximal iff each e_i is primitive.

So, the problem is to write unity $1 \in \mathbb{C}[G]$ as a sum of primitive, central (\Rightarrow orthogonal) idempotents. We will derive a formula for this decomposition using characters.
1.5. **Center of \(\mathbb{C}[G] \).** Before I move on to characters, I want to prove one last thing about the group ring \(\mathbb{C}[G] \).

Theorem 1.18. The number of factors \(b \) in the decomposition

\[
\mathbb{C}[G] \cong \prod_{i=1}^{b} \text{Mat}_{d_i}(\mathbb{C})
\]

is equal to the number of conjugacy classes of elements of \(G \).

For, example, the group \(S_3 \) has three conjugacy classes: the identity \(\{1\} \), the transpositions \(\{(12), (23), (13)\} \) and the 3-cycles \(\{(123), (132)\} \).

In order to prove this we note that \(b \) is the dimension of the center of the right hand side. Any central element of \(\text{Mat}_{d_i}(\mathbb{C}) \) is a scalar multiple of the unit matrix which we are calling \(e_i \) (the \(i \)th primitive central idempotent). Therefore:

Lemma 1.19. The center of \(\prod_{i=1}^{b} \text{Mat}_{d_i}(\mathbb{C}) \) is the vector subspace spanned by the primitive central idempotents \(e_1, \ldots, e_b \). In particular it is \(b \)-dimensional.

So, it suffices to show that the dimension of the center of \(\mathbb{C}[G] \) is equal to the number of conjugacy classes of elements of \(G \). (If \(G \) is abelian, this is clearly true.)

Definition 1.20. A class function on \(G \) is a function \(f : G \rightarrow X \) so that \(f \) takes the same value on conjugate elements. I.e.,

\[
f(\tau \sigma \tau^{-1}) = f(\sigma)
\]

for all \(\sigma, \tau \in G \). Usually, \(X = \mathbb{C} \).

For example, any function on an abelian group is a class function.

Lemma 1.21. For any field \(k \), the center of \(k[G] \) is the set of all \(\sum_{\sigma \in G} a_{\sigma} \sigma \) so that \(a_{\sigma} \) is a class function on \(G \). So, \(Z(k[G]) \cong k^c \) where \(c \) is the number of conjugacy classes of elements of \(G \).

Proof. If \(\sum_{\sigma \in G} a_{\sigma} \sigma \) is central then

\[
\sum_{\sigma \in G} a_{\sigma} \sigma = \tau \sum_{\sigma \in G} a_{\sigma} \sigma \tau^{-1} = \sum_{\sigma \in G} a_{\sigma} \tau \sigma \tau^{-1}
\]

The coefficient of \(\tau \sigma \tau^{-1} \) on both sides must agree. So

\[
a_{\tau \sigma \tau^{-1}} = a_{\sigma}
\]

I.e., \(a_{\sigma} \) is a class function. The converse is also clear. \(\square \)

These two lemmas clearly imply Theorem 1.18 (which can now be stated as: \(b = c \) if \(k = \mathbb{C} \)).