2.5. tensor product.

2.5.1. definition and basic properties. The best description of the tensor product is given by the universal property. But, we need to have a concrete description so that we can distinguish between equal and isomorphic modules.

Given modules M, N, P a mapping $f : M \times N \to P$ is called\textbf{bilinear} if for all $x \in M$ and $y \in N$ the mappings

$$f(x, -) : N \to P$$

$$f(-, y) : M \to P$$

are homomorphisms of A-modules.

\textbf{Proposition 2.13} (A-M 2.12). For any two modules M, N there is a module T and a bilinear mapping $f : M \times N \to T$ which has the property that, for any other bilinear mapping $g : M \times N \to P$ there is a unique homomorphism $h : T \to P$ so that $g \circ h = f$.

\[
\begin{array}{ccc}
X \times Y & \overset{f}{\longrightarrow} & T \\
\downarrow{g} & \text{exists} & \downarrow{h} \\
Y & \longrightarrow & P
\end{array}
\]

Furthermore, T is unique up to isomorphism.

The uniqueness of T up to isomorphism is clear. Existence is given by the following construction.

\textbf{Definition 2.14}. If M, N are modules, then let $M \otimes N$ be the A-module constructed as follows. Take the free module on the set $M \times N$. This is $C = A^{(M \times N)}$. Let D be the submodule of C generated by all elements of the form

$$ax + by, z - a(x, z) - b(y, z)$$

$$axz + bw - a(x, z) - b(x, w)$$

for all $x, y \in M$, $z, w \in N$ and $a, b \in A$. Then the quotient C/D is called the\textbf{ tensor product} of M and N and denoted by $M \otimes N$. The image of $(x, y) \in M \times N$ in $M \otimes N$ is denoted $x \otimes y$.

\textbf{Proof of Proposition 2.13}. The mapping $f : M \times N \to M \otimes N$ given by $f(x, y) = x \otimes y$ is clearly bilinear and any mapping $g : M \times N \to P$ induces a unique mapping $\tilde{g} : C \to P$ and g is bilinear iff $D \subseteq \ker \tilde{g}$. So, we get an induced map $h : C/D = M \otimes N \to P$. The map is unique since the elements $x \otimes y$ generate $M \otimes N$ and h must send $x \otimes y$ to $f(x, y)$.

\qed
The tensor product has the important functorial property that, given homomorphisms \(f : M \to M' \) and \(g : N \to N' \) there is an induced homomorphism

\[f \otimes g : M \otimes N \to M' \otimes N' \]

given by \((f \otimes g)(x \otimes y) = f(x) \otimes g(y)\). (Since \(f(x) \otimes g(y) \) is bilinear in \((x, y)\) we get this induced map.)

Proposition 2.15. We have natural isomorphisms

1. \(M \otimes N \cong N \otimes M \).
2. \(M \otimes (N \otimes P) \cong (M \otimes N) \otimes P \).
3. \((M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P) \).
4. \(A \otimes M \cong M \).

Natural isomorphism means that the following diagram commutes (in the first case)

\[
\begin{array}{ccc}
M \otimes N & \xrightarrow{\cong} & N \otimes M \\
\downarrow f \otimes g & & \downarrow g \otimes f \\
M' \otimes N' & \xrightarrow{\cong} & N' \otimes M'
\end{array}
\]

Problem: If \(a, b \) are coprime show that \(A/a \otimes A/b = 0 \).

2.5.2. Homological Properties

The basic homological properties of tensor product are

1. tensor product is *right exact* and
2. tensor product is *left adjoint* to \(\text{Hom} \).

The second property implies that first (and also implies that \(\text{Hom} \) is left exact). However, I want to start by stating the first property.

Proposition 2.16 (A-M 2.18). Suppose that \(M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0 \) is an exact sequence of \(A \)-modules and \(N \) is another \(A \)-module. Then

\[M' \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M'' \otimes N \to 0 \]

is exact.

Proof. The fact that \(g \otimes 1 : M \otimes N \to M'' \otimes N \) is onto is obvious. However, exactness at the other point is not obvious. What we do is to show that \(M'' \otimes N \) is the cokernel in the diagram. This means that given any module \(P \) and homomorphism \(h : M \otimes N \to P \) so that the composition

\[
M' \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M'' \otimes N \xrightarrow{h} P
\]

is zero, there is a unique way to factor the map \(h \) through \(M'' \otimes N \).
Lemma 2.17. There is a natural isomorphism
\[\text{Hom}(M \otimes N, P) \cong \text{Hom}(M, \text{Hom}(N, P)) \]
given by sending \(h : M \otimes N \to P \) to \(\hat{h} \) where \(\hat{h}(x) = h(x \otimes -) : N \to P \) for all \(x \in M \).

Assuming that the lemma is true, we continue the proof of the proposition. First, we claim that \(\hat{h} \circ f = 0 : M' \to M \to \text{Hom}(N, P) \). This is a simple calculation:
\[\hat{h}(f(x)) = h(f(x) \otimes -) = 0 \]
Therefore \(\hat{h} \) factors uniquely through \(M'' \):

\[
\begin{array}{ccc}
M' & \xrightarrow{f} & M & \xrightarrow{g} & M'' & \xrightarrow{0} & 0 \\
\downarrow{0} & & \downarrow{\hat{h}} & & \downarrow{\exists k} & & \\
\text{Hom}(N, P) & & & & \\
\end{array}
\]

Using the lemma again, the induced homomorphism \(M'' \to \text{Hom}(N, P) \) is the adjoint of a unique mapping \(k : M'' \otimes N \to P \) so that \(k \circ g \otimes 1 = 0 \). So, \((g \otimes 1, M'' \otimes N)\) is the cokernel of \(f \otimes 1 \) as claimed. \(\square \)

Proof of Lemma 2.17. The map going from right to left sends \(f : M \to \text{Hom}(N, P) \) to the map \(\hat{f} : M \otimes N \to P \) given by \(\hat{f}(x \otimes y) = f(x)(y) \). Since this is bilinear, it induces a map on the tensor product. It is straightforward to check that these two “adjunction maps” are inverse to each other. \(\square \)

Exercise 2.18. (1) Show that \(M/\text{a}M \cong A/\text{a} \otimes M \).

(2) If \(M \) is finitely generated and nonzero, then show that there is a maximal ideal \(\text{m} \) so that \(M/\text{m}M \neq 0 \).

(3) If \(A^n \cong A^m \) show that \(n = m \). (Remember that \(A/\text{m} \) is a field.)

2.5.3. change of rings. Tensor product is useful for explaining what is extension of scalars. If \(\varphi : A \to B \) is a ring homomorphism then the restriction of scalars functor is given by taking any \(B \)-module \(M \) and considering the same additive group \(M \) as an \(A \)-module with action of \(a \in A \) given by multiplication by the image of \(a \) in \(B \):
\[a(x) = \varphi(a)x \]
We call this \(A M \). In particular \(B \) becomes an \(A \)-module \(AB \).

The extension of scalars functor takes an \(A \)-module \(M \) and gives a \(B \) module
\[M_B = B \otimes_A M \]
(When there is more than one ring, it is helpful to put the subscript \otimes_A to indicate that it is tensor product as A-modules.) The B-module structure on M_B is given by multiplication on the first factor:

$$b(c \otimes x) = (bc) \otimes x$$

More generally, if N is a B-module, we can consider N as an A-module by restriction of scalars and we can take the tensor product $N \otimes_A M$. This is a B-module with action of B given by multiplication on the first tensor factor.

Proposition 2.19 (A-M 2.15). If M, N are B-modules and P is an A module then

$$M \otimes_B (N \otimes_A P) \cong (M \otimes_B N) \otimes_A P$$

Proposition 2.20 (A-M 2.17). If M is a f.g. A-module then M_B is a f.g. B-module.

Proposition 2.21 (A-M 2.16). If M is a f.g. B-module and B is f.g. as an A-module then AM is a f.g. A-module.

When we have a fixed ring homomorphism $\varphi : A \to B$ we say that B is an algebra over A. If B is finitely generated as an A-module then we say that B is a finite A-algebra. For example $A[x]/(x^2)$ is a finite algebra over A. $A[x, y]$ is not a finite algebra but it is finitely generated (by x, y). An A-algebra is finitely generated if it is a quotient of a polynomial algebra $A[x_1, \cdots, x_n]$ over A in finitely many variables.

2.5.4. flat modules. If $\otimes N$ is exact then N is called a flat module. This means that for any short exact sequence $0 \to M' \to M \to M'' \to 0$ we get a short exact sequence

$$0 \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0$$

Exercise 2.22. (1) A is flat.

(2) If N, N' are flat then $N \oplus N'$ is flat

(3) If N, N' are flat then $N \otimes N'$ is flat

(4) If N is flat then $\otimes N$ takes long exact sequences to long exact sequences.

(5) If N is a flat A-module and B is an algebra over A then N_B is a flat B-module.