3.4. review.
\[
\frac{x}{s} = 0 \text{ in } S^{-1}M \iff xu = 0 \text{ for some } u \in S
\]
and (Corollary 3.9):
\[
S^{-1}M \cong S^{-1}A \otimes M
\]

Lemma 3.12 (A-M 3.7). \(S^{-1}(M \otimes_A N) \cong S^{-1}M \otimes_{S^{-1}A} S^{-1}N \). In particular:
\[
(M \otimes_A N)_p \cong M_p \otimes_{A_p} N_p
\]

3.5. local properties. A property \(P \) describing a class of rings or modules is called **local** if property \(P \) holds for a ring \(A \) (or module) iff it holds for every localization \(A_p \) at a prime ideal has property \(P \). For example, the property of being equal to 0 is local:

Proposition 3.13 (A-M 3.8). If \(M \) is an \(A \)-module, the following are equivalent.

1. \(M = 0 \)
2. \(M_p = 0 \) for every prime ideal \(p \) in \(A \)
3. \(M_m = 0 \) for every maximal ideal \(m \) in \(A \).

Proof. (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) is clear. So, we just need to show \(\neg(1) \Rightarrow \neg(3) \).
If \(x \neq 0 \in M \) consider \(\text{Ann}(x) \subseteq m \).

Using the exactness of localization, we can easily get:

Corollary 3.14 (A-M 3.9). Suppose that \(\varphi : M \rightarrow N \) is a homomorphism of \(A \)-modules. Then the following are equivalent.

1. \(\varphi \) is a monomorphism.
2. \(\varphi_p : M_p \rightarrow N_p \) is a monomorphism for every prime ideal \(p \) in \(A \)
3. \(\varphi_m : M_m \rightarrow N_m \) is a monomorphism for every maximal ideal \(m \) in \(A \).

And the same holds with “monomorphism” replace with “epimorphism.”

This, and Lemma 3.12 imply that flatness is a local property:

Proposition 3.15 (A-M 3.10). If \(M \) is an \(A \)-module, the following are equivalent.

1. \(M \) is flat.
2. \(M_p \) is a flat \(A_p \)-module for every prime ideal \(p \) in \(A \)
3. \(M_m \) is a flat \(A_m \)-module for every maximal ideal \(m \) in \(A \).
3.6. **Extended and Contracted Ideals in Localizations.** Recall: for the ring homomorphism $f : A \to S^{-1}A$ the extension of an ideal $a \subseteq A$ is given by $a^e = S^{-1}a$ and the contraction of an ideal $b \subseteq B$ is, by definition, $b^e = f^{-1}(b)$. It is clear that the contraction of a prime ideal is prime.

Also, there is always a bijection between the set of contracted ideals $C = \{b^e \mid b \subseteq B, b = b^e\}$ and the set of extended ideals $E = \{a^e \mid a \subseteq A, a = a^e\}$.

Proposition 3.16 (A-M 3.11).
(i) Every ideal in $S^{-1}A$ is an extended ideal.
(ii) If a is an ideal in A then
$$a^{ec} = \bigcup_{s \in S} (a : s)$$

So, $a^e = S^{-1}A$ iff $S \cap a \neq \emptyset$.

(iv) $p \leftrightarrow p^e$ gives a bijection between the primes in A disjoint from S and the primes in $S^{-1}A$.

Proof. (i), (ii) are easy. For (iv): If q is a prime ideal in $S^{-1}A$ then q^e is prime in A and $q^{ec} = q$. So, q^e is disjoint from S by (ii).

Going the other way, suppose that p is a prime ideal in A disjoint from S. In other words, $S \subseteq T = A - p$. Then,

$$S^{-1}T = \left\{ \frac{t}{s} \mid t \in T, s \in S \right\}$$

is a multiplicative subset of $S^{-1}A$ and

$$S^{-1}A = S^{-1}T \prod S^{-1}p$$

Therefore $p^e = S^{-1}p$ is a prime ideal in $S^{-1}A$.

Corollary 3.17 (A-M 3.13). If $p \subseteq A$ is prime then the prime ideals of A_p are q_p where q is a prime contained in p.

Exercise 3.18.

1. Show that the ring homomorphism $f : A \to S^{-1}A$ induces an injective mapping:

$$f^* : Spec(S^{-1}A) \to Spec(A)$$

2. If $S = \{1, h, h^2, h^3, \cdots \}$ then $S^{-1}A$ is denoted A_h and the image of $Spec(A_h)$ in $Spec(A)$ is the set

$$X_h = \{ p \mid h \notin p \}$$
(3) Show that the mapping in (1) is a homeomorphism onto its image. Recall that the basic open sets in $\text{Spec}(A)$ are the subsets X_h above. (The closed sets are $V(E) = \{ p \mid E \subseteq p \}$.)

Proposition 3.19 (A-M 3.11(v)).

1. $S^{-1}(a \cap b) = S^{-1}a \cap S^{-1}b$
2. $S^{-1}(ab) = (S^{-1}a)(S^{-1}b)$
3. $S^{-1}(a + b) = S^{-1}a + S^{-1}b$
4. $S^{-1}(r(a)) = r S^{-1}a$

Putting $a = 0$ in (4) we get:

Corollary 3.20 (A-M 3.12). $S^{-1}\text{nilrad } A = \text{nilrad } S^{-1}A$

Lemma 3.21. $\text{Ann}(S^{-1}(A/a)) = S^{-1}a$

Proposition 3.22 (A-M 3.14). If M is a f.g. A-module then

$$\text{Ann}(S^{-1}M) = S^{-1}\text{Ann}(M)$$

Since $(N : P) = \text{Ann} \left(\frac{N + P}{N} \right)$ we get:

Corollary 3.23 (A-M 3.15). If N, P are submodules of M and P is f.g. Then

$$S^{-1}(N : P) = (S^{-1}N : S^{-1}P)$$