3. Nilpotent and solvable Lie algebras

I can’t find my book. The following is from Fulton and Harris.

Definition 3.0.1. A Lie algebra is **solvable** if its iterated derived algebra is zero. In other words, $D^kL = 0$ where $DL = [LL], D^2L = [(DL)(DL)] = [[LL][LL]],$ etc. This is a recursive definition: The k-th derived algebra of L is the $k - 1$st derived algebra of $[LL].$

Definition 3.0.2. A Lie algebra is **nilpotent** of class k if

$$\text{ad}^k_L(L) = [L \cdots [L[L[L]] \cdots] = 0$$

for some k.

Note that if L is nilpotent of class k then $\text{ad}^k_x = 0$ for all $x \in L$ since $\text{ad}^k_x(y) = [x[x \cdots [xy] \cdots]] \in [L[L[L \cdots [LL] \cdots]]] = 0.$ Every element of L is ad-nilpotent.

3.1. **Engel’s Theorem.** This is converse of the above statement.

Theorem 3.1.1 (Engel). If L is a finite dimensional Lie algebra in which every element is ad-nilpotent then L is nilpotent.

We prove this theorem in a sequence of lemmas. The first lemma allows us to assume that L is a linear Lie algebra.

Lemma 3.1.2. Suppose the image of the adjoint representation $\text{ad} : L \to \mathfrak{gl}(L)$ is a nilpotent subalgebra of $\mathfrak{gl}(L)$ of class k then L is nilpotent of class $\leq k + 1.$

Proof. The kernel of the adjoint representation is the center $Z = Z(L).$ If L/Z is nilpotent of class k then $\text{ad}^k_{L/Z}(L/Z) = \text{ad}^k_L(L) \subseteq Z.$ But $[LZ] = 0$ so $\text{ad}^{k+1}_L(L) = [[L[L[L[L \cdots [LL] \cdots]]]] \subseteq [LZ] = 0.$ \hfill \square

If every element of L is ad-nilpotent then the image of the adjoint representation consists of nilpotent endomorphism of L considered as a vector space.

Lemma 3.1.3. Suppose that L is a subalgebra of $\mathfrak{gl}(V)$ where V is a nonzero finite dimensional vector space over $F.$ Suppose that every element of L is a nilpotent endomorphism of $V.$ Then there exists a nonzero element $v \in V$ so that $x(v) = 0$ for all $x \in L.$

Some people call this Engle’s Theorem since it is the key step in the proof of the theorem. To see that the lemma implies the theorem, let K be the subspace of V spanned by the vector $v.$ Then the action of L on V induces an action on V/K which is nilpotent. So, the image of L in $\mathfrak{gl}(V/K)$ is a nilpotent Lie algebra of class, say $k.$ This implies that $L^k(V) \subseteq K.$ So, $L^{k+1}(V) = 0$ making L nilpotent of class $k + 1.$

Proof of key lemma. The proof is by induction on the dimension of $L.$ If L is one-dimensional, the lemma is clear. So, suppose $\dim L \geq 2.$ Let J be a maximal proper subalgebra of $L.$

Claim 1: J is an ideal of codimension 1 in $L.$

Remark

Since \(J \) is smaller than \(L \), there is a nonzero vector \(v \in V \) so that \(J(v) = 0 \). Let \(W \) be the set of all \(v \in V \) so that \(J(v) = 0 \). Then \(W \) is a nonzero vector subspace of \(V \). Take \(y \in L, y \notin J \).

Claim 2: \(y(W) \subseteq W \).

Pf: We need to show that, for any \(x \in J \) and \(w \in W \), \(xy(w) = 0 \). This follows from the following calculation:

\[xy(w) = [xy](w) + yx(w) = 0 + 0 = 0 \]

since \([xy] \in J\) and \(J(w) = 0 \).

Since \(y \) is nilpotent and sends \(W \) into \(W \), there is some nonzero \(w \in W \) so that \(y(w) = 0 \). Since \(J(w) = 0 \), we conclude that \(L(w) = 0 \) proving the lemma.

Exercise 3.1.4.

1. Show that \(n(n, F) \) is nilpotent of class \(n - 1 \). Hint: there is a filtration of \(V = F^n \) by vector subspaces

\[
0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n
\]

so that \(x(V_i) \subseteq V_{i-1} \) for all \(x \in n(n, F) \). Such a sequence of subspaces of \(V \) is called a flag.

2. Show that, for any linear Lie algebra \(L \subseteq \mathfrak{gl}(V) \), the existence of a flag in \(V \) with the property that \(x(V_i) \subseteq V_{i-1} \) implies that \(L \) is a subalgebra of \(n(n, F) \) up to isomorphism. (Assume \(\dim V = n \) is finite.)

3. Show that any nilpotent subalgebra of \(\mathfrak{gl}(V) \) is isomorphic to a subalgebra of \(n(n, F) \) where \(n = \dim V \).

3.2. Lie’s theorem.

When we go to solvable Lie algebras we need the ground field \(F \) to be algebraically closed of characteristic 0. So, we might as well assume that \(F = \mathbb{C} \).

Then we have the following theorem whose statement and proof are similar to the statement and proof of the key lemma for Engel’s Theorem.

Theorem 3.2.1 (Lie). Suppose that \(L \subseteq \mathfrak{gl}(V) \) is a solvable linear Lie algebra over \(\mathbb{C} \). Then there exists a nonzero vector \(v \in V \) which is a simultaneous eigenvector of every element of \(L \), i.e., \(x(v) = \lambda(x)v \) for every \(x \in L \) where \(\lambda(x) \in \mathbb{C} \).

Remark 3.2.2. Before proving this we note that, the function \(\lambda : L \to \mathbb{C} \) is a linear map.

1. \(ax(v) = a\lambda(x)v \). So, \(\lambda(ax) = a\lambda(x) \).
2. \((x + y)(v) = x(v) + y(v) = \lambda(x)v + \lambda(y)v = (\lambda(x) + \lambda(y))(v) \). So, \(\lambda(x + y) = \lambda(x) + \lambda(y) \).
Furthermore, note that if $\lambda : L \to \mathbb{C}$ is a linear map then the equation $x(v) = \lambda(x)(v)$ is a linear equation in x. Therefore, if this equation holds for all x in a spanning set for L then it holds for all x in L.

Proof. The proof is by induction on the dimension of L. If L is one dimensional then we are dealing with one endomorphism x of V. Since \mathbb{C} is algebraically closed, the characteristic polynomial of x has a root $\lambda \in \mathbb{C}$ and a corresponding eigenvector v. $(x(v) = \lambda v$. So, $\lambda_x = \lambda$.) So, suppose that $\dim L \geq 2$.

The next step is to find a codimension one ideal J in L. Since $[LL] \subseteq L$, this is easy. Take any codimension one vector subspace of $L/[LL]$ and let J be the inverse image of this in L.

By induction there is a nonzero vector $v \in V$ and a linear map $\lambda : J \to \mathbb{C}$ so that $x(v) = \lambda(x)v$ for all $x \in J$. Let W be the set of all $v \in V$ with this property (for the same linear function λ). Let $y \in L, y \notin J$.

Claim: $y(W) \subseteq W$.

Suppose for a moment that this is true. Then, we can find an eigenvalue $\lambda(y)$ and eigenvector $w \in W$ so that $y(w) = \lambda(y)w$. By the remark, this extended linear map λ satisfies the desired equation. The Claim is proved more generally in the following lemma.

Lemma 3.2.3. Suppose that J is an ideal in L, V is a representation of L and $\lambda : J \to F$ is a linear map. Assume $\text{char } F = 0$. Let

$$W = \{v \in V \mid x(v) = \lambda(x)v \forall x \in J\}$$

Then $y(W) \subseteq W$ for all $y \in L$.

Proof. Define W_i recursively as follows. $W_0 = 0$ and

$$W_{k+1} = \{v \in V \mid x(v) = \lambda(x)(v) \in W_k \forall x \in J\}$$

Then $W = W_1 \subseteq W_2 \subseteq \cdots$ since V is finite dimensional we must have $W_k = W_{k+1}$ for some k. This means that $(x - \lambda(x))^k = 0$ on W_k. So, for any $x \in J$, the matrix of x as an endomorphism of W_k is upper triangular with $\lambda(x)$ on the diagonal and we have

$$\text{Tr}(x|W_k) = \lambda(x) \dim W_k$$

Claim For any $y \in L, y(W_k) \subseteq W_{k+1} = W_k$.

Suppose for a moment that this is true. Then, for any $x \in J, y \in L$ we have $\text{Tr}([xy]|W_k) = 0 = \lambda[xy] \dim W_k$. Since $\text{char } F = 0$ this implies $\lambda[xy] = 0$. We can now show that $y(w) \in W$ for all $y \in L, w \in W$:

$$x(y(w)) = yx(w) + [xy](w) = \lambda(x)y(w) + \lambda[xy](w) = \lambda(x)y(w)$$

Thus it suffices to prove the claim.

Proof of Claim: $y(W_i) \subseteq W_{i+1}$. To prove this we must show that, for any $w \in W_i, x \in J$ we have $(x - \lambda(x))y(w) \in W_i$. This is a calculation similar to the one above:

$$x(y(w)) - \lambda(x)y(w) = y((x - \lambda(x))(w) + [xy](w) \in y(W_{i-1}) + W_i \subseteq W_i$$

proving the claim by induction. (It is clear when $i = 0$.)
Exercise 3.2.4. (1) Show that $t(n, F)$ is solvable.

(2) Show that any solvable subalgebra of $\mathfrak{gl}(n, \mathbb{C})$ is, up to isomorphism, isomorphic to a subalgebra of $t(n, \mathbb{C})$.

(3) If J is an ideal in L then show that L is solvable if and only if J and L/J are solvable.

(4) Prove that the following are equivalent.
 (a) L is solvable.
 (b) L has a sequence of ideals $L \supset J_1 \supset J_2 \cdots \supset J_n = 0$ so that J_k/J_{k+1} is abelian for each k.
 (c) L has a sequence of subalgebras $L \supset L_1 \supset L_2 \cdots \supset L_n = 0$ so that L_{k+1} is an ideal in L_k and L_k/L_{k+1} is abelian for all k.