Representation Theory

Throughout the rest of these notes L will be a finite dimensional semisimple Lie algebra over $F = \mathbb{C}$ with CSA H, root system Φ, base Δ and Weyl group W. Although L will be finite dimensional, we need to consider infinite dimensional representations V of L. The main goal will be to explain the Weyl character formula. The proof will come afterwards.

20. Weights and maximal vectors

The statement is: Irreducible representations V of L are uniquely determined up to isomorphism by their highest weight and are generated by any vector of highest weight. This is true when V is finite dimensional and is also true for many infinite dimensional V. The main problem is that an infinite dimensional representation may not have a highest weight.

20.1. Definitions. Recall that L has a root space decomposition

$$L = H \oplus \bigoplus_{\alpha \in \Phi} L_{\alpha}$$

For any representation V of L and any $\lambda : H \rightarrow F = \mathbb{C}$ recall that the λ weight space of V is:

$$V_{\lambda} = \{ v \in V \mid h(v) = \lambda(h)v \}$$

Let V' be the sum of all the weight spaces V_{λ}.

Proposition 20.1.1. (1)

$$V' = \bigoplus_{\lambda} V_{\lambda}$$

(2) $L_{\alpha}(V_{\lambda}) \subseteq V_{\lambda+\alpha}$.

(3) $V' = V$ if V is finite dimensional.

Definition 20.1.2. A highest weight for V is a weight λ so that $V_{\lambda} \neq 0$ but $V_{\lambda+\alpha} = 0$ for all $\alpha \in \Phi_{+}$.

It is clear that any (nonzero) finite dimensional representation has a highest weight.

Example 20.1.3. For the adjoint representation $V = L$, the highest weight is equal to the maximal root.

Definition 20.1.4. A maximal vector $v^+ \in V$ is a nonzero element with the property that

$$x_{\alpha} v^+ = 0$$

for all $x_{\alpha} \in L_{\alpha}$ where α is a positive root.

It is clear that any nonzero vector of highest weight is a maximal vector. The converse is not true.

It is enough to have $x_{\alpha} v^+ - 0$ for $\alpha \in \Delta$.
Example 20.1.5. Let $L = \mathfrak{sl}(2, F) = H \oplus L_\alpha \oplus L_{-\alpha}$. Recall that $H = Fh_\alpha, L_\alpha = Fx_\alpha, L_{-\alpha} = Fy_\alpha$. Since there is only one positive root α, a maximal weight in a representation V is any nonzero $v \in V$ so that $x_\alpha(v) = 0$.

Let $V = \mathfrak{sl}(3, F)$ with positive roots $\alpha, \beta, \alpha + \beta$. The weight space decomposition of V is

$$V = V_\alpha \oplus V_{\frac{1}{2} \alpha} \oplus V_0 \oplus V_{-\frac{1}{2} \alpha} \oplus V_{-\alpha}$$

Identifying $\alpha = 2$ since H^* is one dimensional and $\alpha(h_\alpha) = 2$, this can be rewritten:

$$V = V_2 \oplus V_1 \oplus V_0 \oplus V_{-1} \oplus V_{-2}$$

- The vector $x_\alpha \in V_2$ is a maximal vector since it has highest weight.
- The vector $x_{\alpha + \beta} \in V$ is maximal since $[x_\alpha, x_{\alpha + \beta}] = 0$. It also lies in V_1:
 $$h_\alpha(x_{\alpha + \beta}) = (\alpha(h_\alpha) + \beta(h_\alpha))x_{\alpha + \beta} = (2 - 1)x_{\alpha + \beta} = x_{\alpha + \beta}$$
 so it has highest weight since $V_{\frac{1}{2} \alpha + \alpha} = V_3 = 0$.
- The vector $h_\alpha + 2h_\beta \in V_0$ is also a maximal vector since
 $$x_\alpha(h_\alpha + 2h_\beta, x_\alpha) = -(\alpha(h_\alpha) + 2\beta(h_\alpha))x_\alpha = -(2 - 2)x_\alpha = 0$$
 but $h_\beta \in V_0$ so it does not have highest weight.

Note that, in this example, V has two highest weights.

20.2. Standard cyclic modules.

Definition 20.2.1. A standard cyclic module of highest weight λ is a representation V which is generated by a single maximal vector v^+ of weight λ.

This means that V is spanned by elements of the form $a_1a_2\cdots a_nv^+$ where $a_i \in L$. I.e., $V = \mathcal{U}(L)v^+$. The fact that the finite dimensional Lie algebra L can have infinite dimensional cyclic modules comes from the fact that $\mathcal{U}(L)$ is infinite dimensional in general.

Lemma 20.2.2. Let V be a standard cyclic module generated by $v^+ \in V_\lambda$. Then V is spanned by elements of the form

$$y_{\beta_1}y_{\beta_2}\cdots y_{\beta_k}v^+$$

where β_i are positive roots and $y_\beta \in L_{-\beta}$.

Proof. Use PBW to see that $\mathcal{U}(L)v^+ = \mathcal{U}(N_-(L))\mathcal{U}(B(\Delta))v^+ = \mathcal{U}(N_-(L))v^+ \quad \square$

Theorem 20.2.3. If V is standard cyclic as above then

1. λ is a highest weight.
2. V_λ is one dimensional.
3. V has a weight space decomposition $V = \bigoplus V_\beta$ where β runs over weights of the form $\lambda - \sum k_i\alpha_i$ where $\alpha_i \in \Delta$ and k_i are nonnegative integers.

In the proof of the corollary below we used the following lemma.
Lemma 20.2.4. \(v^+ \in V \) is a maximal vector iff it satisfies the condition:

\[
Bv^+ = \mathbb{C}v^+
\]

In other words, \(v^+ \) is a common eigenvector for all elements of the Borel subalgebra \(B = B(\Delta) \).

Proof. Let \(W = \mathbb{C}v^+ \). Then \(W \) is a representation of \(B \) and therefore also of \(H \subseteq B \). So, \(v^+ \) is an eigenvector of \(H \) and we have a linear map \(\lambda : H \to \mathbb{C} \) given by \(\lambda(h)v^+ = h(v^+) \). Thus \(W = W_\lambda \). For any positive root \(\alpha \) we have \(x_\alpha \in B \) and \(x_\alpha(v^+) \subseteq W_{\lambda+\alpha} = 0 \). So, \(v^+ \) is a maximal vector of weight \(\lambda \). The converse is obvious. \(\Box \)

Corollary 20.2.5. \(V \) is indecomposable and all quotient modules are cyclic with highest weight \(\lambda \). \(V \) has a unique maximal proper submodule. If \(V \) is irreducible then \(\lambda \) is unique.

Proof. Suppose that \(V = V_1 \oplus V_2 \). Then each element of \(V \) has two coordinates. So, \(v^+ = (v_1^+, v_2^+) \). For every \(b \in B \) we have \(bv^+ = av^+ \) for some \(a \in \mathbb{C} \). But \(av^+ = (av_1^+, av_2^+) \). So, \(Bv_1^+ = \mathbb{C}v_1^+ \) and \(Bv_2^+ = \mathbb{C}v_2^+ \). Therefore, \((v_1^+, 0) \) and \((0, v_2^+) \) are maximal vectors of weight \(\lambda \). But \(V_1 \) is one-dimensional. So, either \(v_1^+ = 0 \) or \(v_2^+ = 0 \). Since \(v^+ \) generates \(V \), \(v_i^+ \) generates \(V_i \). So, either \(V_1 = 0 \) or \(V_2 = 0 \) showing that \(V \) is indecomposable.

Given any submodule \(W \) of \(V \), since \(W \) is an \(H \)-submodule of \(V \), it must be the sum of weight spaces \(W_\mu \). Since \(W \neq V \), we must have \(W_\lambda = 0 \). So, \((V/W)_\lambda = V_\lambda/W_\lambda = V_\lambda \neq 0 \). So, \(v^+ + W \) is a nonzero maximal vector for \(V/W \) of weight \(\lambda \) and it clearly generates \(V/W \). So, \(V/W \) is cyclic.

To show that there is a unique maximal proper submodule, note that all proper submodules of \(V \) lie in the vector subspace \(\bigoplus_{\mu \neq \lambda} V_\mu \). But then the sum of all proper submodules of \(V \) is a proper submodule which is unique since it contains all other proper submodules.

Finally, if \(V \) is irreducible then \(\lambda \) is uniquely determined since, given any other maximal vector \(w^+ \in V_\mu \), the submodule generated by \(w^+ \) must be equal to \(V \). But then \(\lambda = \mu - \sum k_i \alpha_i \) which implies that \(\mu = \lambda + \sum k_i \alpha_i \) which implies that \(\lambda = \mu \). \(\Box \)

20.3. Existence and uniqueness of cyclic modules. I proved the existence theorem first:

Theorem 20.3.1. For any \(\lambda : H \to \mathbb{C} \), there exists an irreducible standard cyclic module with highest weight \(\lambda \).

Proof. Start with a one dimensional representation \(D_\lambda = \mathbb{C}v^+ \) of \(B \) given by taking the action of any \(h \in H \) to be multiplication by \(\lambda(h) \) and the action of any \(x_\alpha \in L_\alpha \) to be zero. Then take:

\[
V = U(L) \otimes_{U(B)} D_\lambda
\]

This is the \(L \)-module obtained from \(D_\lambda \) by “extension of scalars” which is also called the “induced representation.” (Recall that for any homomorphism of rings \(R \to S \) and any \(S \)-module \(M \) we have an \(R \)-module given by \(R \otimes_S M \).)

The \(L \)-module \(V \) is generated by the element \(1 \otimes v^+ \) which is a maximal vector of weight \(\lambda \) since \(b(1 \otimes v^+) = 1 \otimes bv^+ \) is a scalar multiple of \(1 \otimes v^+ \) and that scalar is equal to \(\lambda(h) \) when \(b = h \in H \).

By the corollary, \(V \) has a unique maximal proper submodule \(M \) and the quotient \(V/M \) is the desired irreducible cyclic module with prescribed highest weight \(\lambda \). \(\Box \)
Theorem 20.3.2. There is only one irreducible V with highest weight λ (up to isomorphism).

Proof. Suppose there are two of irreducible standard cyclic modules V^1, V^2 with the same highest weight λ. Then $V^1_\lambda = \mathbb{C}v_1$ and $V^2_\lambda = \mathbb{C}v_2$. Let $V = V^1 \oplus V^2$. Then $V^1_\lambda = V^1_\lambda \oplus V^2_\lambda$. So, $v^+ = (v^+_1, v^+_2)$ is a maximal vector since, for all $b \in B$ we have $bv^+ = (bv^+_1, bv^+_2) = (av^+_1, av^+_2) = av^+$ for some scalar a. (Since a is uniquely determined by b and λ, it is the same scalar in both coordinates.)

Let W be the cyclic module generated by v^+. Then the projection map $p_1 : W \to V_1$ is onto since it sends v^+ to the generator v^+_1 of V_1. Since V_1 is irreducible, the kernel of p_1 is the unique maximal proper submodule M of W. So, $V_1 \cong W/M$. Similarly, $V_2 \cong W/M$. So, $V_1 \cong V_2$. Furthermore, this isomorphism sends v^+_1 to v^+_2. \qed