21. Finite dimensional modules

Given any weight $\lambda : H \to \mathbb{C}$ we have the cyclic module

$$Z(\lambda) = U(L) \otimes_{U(B)} D_\lambda$$

This is called the Verma module of highest weight λ. This module has a unique maximal proper submodule and the quotient $V(\lambda)$ is the unique irreducible module with highest weight λ. In this section we determine when $V(\lambda)$ is finite dimensional. If we recall Weyl’s Theorem (Every finite dimensional representation of a semisimple Lie algebra is a direct sum of irreducible modules.) this will give a complete classification of all finite dimensional representations of semisimple Lie algebras.

The statement is:

Theorem 21.0.3. $V(\lambda)$ is finite dimensional iff λ is a dominant weight, i.e., $\lambda(h_\alpha) = \langle \lambda, \alpha \rangle$ is a nonnegative integer for all positive roots α.

The theory of dominant weights was done abstractly in Section 13 which we skipped. Now we need some of the basic concepts from that section.

21.1. Dominant weights. Suppose that $\alpha_1, \ldots, \alpha_n$ are the positive simple roots (the elements of the base Δ). For each i we have a copy $S_i = S_{\alpha_i}$ of $\mathfrak{sl}(2, F)$ with basis $x_i, y_i, h_i = h_{\alpha_i} \in H$. Then the h_i form a vector space basis for H.

Definition 21.1.1. An abstract or integral weight is a linear function $\lambda : H \to \mathbb{C}$ with the property that $\lambda(h_i) \in \mathbb{Z}$ for all i. An abstract weight is called dominant if $\lambda(h_i) \geq 0$ for all i. The fundamental dominant weights λ_i are the ones given by:

$$\lambda_i(h_j) = \delta_{ij}$$

I.e., these form the dual basis for the basis of H given by the h_i.

Example 21.1.2. For $L = \mathfrak{sl}(2, \mathbb{C})$ there is only one fundamental weight $\lambda_1 = \frac{1}{2} \alpha$:

$$\lambda_1(h_1) = \frac{1}{2} \alpha(h_\alpha) = \frac{2}{2} = 1$$

Exercise 21.1.3. Show that for $L = \mathfrak{sl}(3, \mathbb{C})$, the fundamental weights are

$$\lambda_1 = \frac{2}{3} \alpha_1 + \frac{1}{3} \alpha_2, \quad \lambda_2 = \frac{1}{3} \alpha_1 + \frac{2}{3} \alpha_2$$

It is clear that all dominant weights are given by addition of the fundamental dominant weights:

$$\lambda = \sum n_i \lambda_i$$

where n_i are nonnegative integers.

The set of dominant weights is denoted Λ^+. A weight $\lambda = \sum n_i \lambda_i$ is called strongly dominant if $n_i > 0$ for all i. One important example is the minimal strongly dominant weight given by

$$\delta = \sum \lambda_i$$

This is characterized in several ways:
(1) $\delta(h_i) = 1$ for all i.

(2)

$$\delta = \frac{1}{2} \sum_{\alpha \in \Phi_+} \alpha$$

To prove the last equation we use the action of the Weyl group W. Let $\mu = \frac{1}{2} \sum \alpha$. Apply the simple reflection s_i given by

$$s_i(x) = x - \langle x, \alpha_i \rangle \alpha_i$$

We know that s_i sends α_i to $-\alpha_i$ and permutes the other positive roots. So:

$$s_i(\mu) = \mu - \alpha_i = \mu - \langle \mu, \alpha_i \rangle \alpha_i$$

Therefore, $\langle \mu, \alpha_i \rangle = \mu(h_i) = 1$ for all i. So, $\mu = \delta$.

21.2. finite irreducible modules.

Theorem 21.2.1. If $V(\lambda)$ is finite dimensional then

1. λ is a dominant weight.
2. All weights μ of $V(\lambda)$ are integral weights and therefore given as integer linear combinations of the fundamental weights:

$$\mu = \sum n_i \lambda_i$$

3. The set Π of weights μ which occur in $V(\lambda)$ is saturated (defined below).

A set Π of integral weight $\mu = \sum n_i \lambda_i$ is saturated if, for all $\beta \in \Phi$ and all integers $0 \leq m \leq \langle \mu, \beta \rangle$, $\mu - m \beta \in \Pi$. Since every root is a sum of simple roots, it is enough to have this for $\beta = \alpha_i$ in which case $0 \leq m \leq n_i = \langle \mu, \alpha_i \rangle$.

Proof. We view $V(\lambda)$ as a representation of S_i and quote results from Section 7. Each weight of $V(\lambda)_\mu$ becomes $\mu(h_i) = n_i$. Therefore, n_i must be an integer. Thus all weights μ are integral. For the highest weight λ, $\lambda(h_i)$ must be a nonnegative integer. So, λ is dominant.

The action of y_i on $V(\lambda)$ sends $V(\lambda)_\mu$ to $V(\lambda)_{\mu-\alpha_i}$ and, by symmetry of the weights of representations of S_i around 0,

$$y_i^n(w) \neq 0 \in V(\lambda)_{\mu-n\alpha_i}$$

for all $w \neq 0 \in V(\lambda)_\mu$. So, Π is saturated.

Theorem 21.2.2. If λ is any dominant weight then $V(\lambda)$ is finite dimensional. Furthermore, the set Π of weights μ is invariant under the action of the Weyl group and is minimal W-invariant saturated set of integral weights which contains λ.

Proof. You can read the proof in the book. Here is an outline.

1. For each i the sequence of elements

$$v^+, y_i v^+, y_i^2 v^+, \cdots, y_i^k v^+$$

for $k = \lambda(h_i)$ forms a finite dimensional S_i submodule of $V(\lambda)$.

(2) Let V' be the sum of all finite dimensional S_i submodules of $V(\lambda)$. Then V' is a nonzero L-submodule and therefore $V' = V$.

(3) Recall that $\tau_i = \exp(x_i)\exp(-y_i)\exp(x_i)$ is an automorphism of $V(\lambda)$ which lifts the action of the simple reflection σ_i. Thus $\tau_i V(\lambda)_{\mu} = V(\lambda)_{\sigma_i \mu}$. (Since $V = V'$, $\tau_i V = \tau_i V' = V' = V$.)

(4) All weights are integral by the Key Lemma 20.2.2 we proved last time. Also $V(\lambda)_{\mu}$ is finite dimensional for all μ.

(5) The symmetry of Π under the Weyl group forces it to be finite.

(6) If Π' is the minimal W-invariant saturated subset of Π then $\bigoplus_{\mu \in \Pi'} V(\lambda)_{\mu}$ is a submodule of $V(\lambda)$ and therefore the whole thing.

I pointed out at the end of the class that, in order to prove that $V(\lambda)$ is finite dimensional it suffices to construct a finite dimensional cyclic module of highest weight λ for any dominant weight λ since $V(\lambda)$ is uniquely determined by λ.

Lemma 21.2.3. $V(\lambda) \otimes V(\mu)$ contains a maximal vector of highest weight $\lambda + \mu$.

Proof. Let $v = v_1^+ \otimes v_2^+ \in V(\lambda) \otimes V(\mu)$. Then, for any $h \in H$ we have

$$h(v) = h(v_1^+ \otimes v_2^+) = \lambda(v_1^+ \otimes v_2^+) + \mu(h)v_2^+ = (\lambda + \mu)(h)v_1^+ \otimes v_2^+$$

Therefore $v = v_1^+ \otimes v_2^+$ has weight $\lambda + \mu$. Also, for any x_α for positive root α we have

$$x_\alpha(v_1^+ \otimes v_2^+) = x_\alpha(v_1^+) \otimes v_2^+ + v_1^+ \otimes x_\alpha(v_2^+) = 0 + 0 = 0$$

So, $v = v_1^+ \otimes v_2^+$ is a maximal vector. \qed

This elementary lemma implies that, to prove Theorem 21.2.2 it suffices to construct a finite dimensional module containing $V(\lambda_i)$ for the fundamental dominant weights λ_i. We will do this later at least in some case.