MATH 56A: STOCHASTIC PROCESSES
ANSWERS TO HOMEWORK

Homework 8
Brownian motion

Three problems are due on the last day of class. Answers will be posted the following week.

First problem: (reflection principle) Let W_t be standard Brownian motion. Calculate the probability that there exist $0 < a < b < c < 1$ so that $W_a = 1, W_b = -1, W_c = 0$. Give the details of the argument.

Let P be this probability:

$$P = P(W_a = 1, W_b = -1, W_c = 0 \text{ for some } 0 < a < b < c < 1).$$

Then the final answer is:

$$P = 2(1 - \Phi(4)) = 6.3372 \times 10^{-5} = 0.000063372$$

where $\Phi(x)$ is the CDF of the standard normal variable:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-x^2/2} dx$$

Here is the proof using the reflection principle.

First, you need to realize that, after reaching 0 at $t = c$ we either go up or down with equal probability. So, by the reflection principle we have:

$$P = 2P(W_a = 1, W_b = -1 \text{ for some } 0 < a < b < 1 \text{ and } W_1 > 0)$$

To get from $W_b = -1$ to $W_1 > 0$ has the same probability as going from -1 to below -2. So,

$$P = 2P(W_a = 1 \text{ for some } 0 < a < 1 \text{ and } W_1 < -2)$$

Going from $W_a = 1$ to $W_1 < -2$ has the same probability as going from 1 to 4. So, this is:

$$P = 2P(W_1 > 4)$$

But, W_1 is standard normal. So, this is

$$P = 2(1 - \Phi(4)) = 2 - 2\Phi(4).$$

Use scaling to find the probability that there exist $0 < a < b < c < t$ so that $W_a = 1, W_b = -1, W_c = 0$.

We want:

$$P(W_a = 1, W_b = -1, W_c = 0 \text{ for some } 0 < a < b < c < t)$$

By the same argument as before, this is equal to

$$2P(W_t > 4)$$
But $W_t \sim N(0, t)$. So, the probability that $W_t > 4$ is:

$$1 - \Phi(4/\sqrt{t})$$

So, the answer is:

$$\mathbb{P}(W_a = 1, W_b = -1, W_c = 0 \text{ for some } 0 < a < b < c < t) = 2 - 2\Phi\left(\frac{4}{\sqrt{t}}\right)$$

Second problem: (fractal dimension) Take the unit interval $[0, 1]$ and remove the open sets $(1/4, 3/8)$ and $(5/8, 3/4)$. In other word, you remove two open intervals $1/8$ of a unit long leaving three closed intervals $1/4$ of a unit long. Repeat the process infinitely often. Each time you remove two open pieces from each interval that you have leaving three closed intervals which are exactly $1/4$ the size of the interval. Find the fractal dimension of the resulting set using the two methods taught in class:

1. By scaling. (This is the method we used to compute the fractal dimension of the Cantor set which is very similar to this set.)

 Call this set X. If we scale the set X up by a factor of 4 then there will be 3 sets which look just like X. So, the dimension D of X satisfies:

 $$3 = 4^D$$

 In other words,

 $$D = \frac{\ln 3}{\ln 4}.$$

2. By cutting up the interval into smaller intervals and counting how many intervals we need to cover the set. (This is the definition of the box dimension.)

 The set X can be covered by 3 intervals of length $1/4$ since

 $$X \subset [0, 1/4] \cup [3/8, 5/8] \cup [3/4, 1]$$

I claim that X requires 3^k intervals of length $1/4^k$ to cover it. This is proved by induction on k. [Actually the problem does not say to “prove” it. But you need to give an explanation.] The statement is true for $k = 1$ since the three points $0, 1, 3/8 \in X$ need to be covered by different intervals of $1/4$. If you know that you need 3^k intervals of length $1/4^k$ then, by scaling down by a factor of 4 we see that each of the three pieces:

$$X \cap [0, 1/4], \quad X \cap [3/8, 5/8], \quad X \cap [3/4, 1]$$

needs 3^k intervals of length $1/4^{k+1}$ since they are the same as X but scaled down by a factor of 4. So, we need 3 times that many intervals to cover all of X. So, we need 3^{k+1} intervals of length $1/4^{k+1}$ to cover X. This proves the claim by induction on k. The dimension D of X is given by

$$3^k = (4^k)^D$$

This gives

$$D = \frac{k \ln 3}{k \ln 4} = \frac{3}{\ln 4}$$

which is the same as before.
Third problem: (heat equation) Suppose that B is the infinite horizontal strip:
\[B = \{(x, y) \in \mathbb{R}^2 \mid |y| < 1\} \]

Let g be the function on the boundary of B given by
\[g(x, \pm 1) = x \]

1. Solve the heat equation $\Delta f = 0$. [This is very easy. Just guess. Use the fact that the solution is unique.]
 \[f(x, y) = x \]
 is the unique solution.

2. Write the solution as a probability statement. $\mathbb{E}^x(\ldots) = \ldots$
 The probability statement is: Starting at the point $X_0 = (x, y) \in B$, a particle moves according to 2-dimensional Brownian motion. If T is the first time that the particle hits the boundary of B then T is a the stopping time. Then $f(x, y)$ is the expected value of X_T:
 \[f(x, y) = \mathbb{E}(g(X_T) \mid X_0 = (x, y)) \]

3. Give a probabilistic argument to prove this. [This uses a reflection type argument on an unknown density function.]
 Draw a vertical line through the point (x, y). Paths going to the right of this line and those going to the left are mirror images and therefore have equal probability. So, the point X_T is equally likely to lie in the intervals $[x + s, x + s + ds] \times \pm 1$ as it is to lie in the interval $[x - s - ds, x - s] \times \pm 1$. So, the average value of the first coordinate will be x.