EXERCISE SET 1

(1) Let K be a number field, \mathcal{O}_K its ring of algebraic integers. Show that $x \in \mathcal{O}_K^*$ if and only if $N_{K/\mathbb{Q}}(x) = \pm 1$.

(2) Determine \mathcal{O}_K^* when K is a quadratic field $\mathbb{Q}(\sqrt{d})$ with $d < 0$. (Be careful, there are three different answers according to the value of d)

(3) Let R be a noetherian domain. Assume that all maximal ideals of R are principal. Show that R is a PID. (This result was the one needed to complete the proof that a Dedekind domain which is an UFD is a PID, if one wants to avoid using the theorem of decomposition of primes in a Dedekind domain to be proved next week)

(4) Let K be a field and L a K-algebra of finite dimension over K. We have proved in class that if L is a product of fields that are separable over K, the K-bilinear map $\text{Tr}_{L/K}(xy)$ is non-degenerate. The converse also holds. Prove it (this is not obvious), or at least prove the easy result that if Tr is non-degenerate, then L has no nilpotent elements (except 0) – we will need this fact later.

(5) Show that if x, y is in $\mathbb{Z}[i]$, with $y \neq 0$, there exist q and r in $\mathbb{Z}[i]$ such that

$$x = qy + r$$

and $N(r) < N(y)$. Deduce that $\mathbb{Z}[i]$ is a PID, hence a UFD.

(6) Exhibit a non principal ideal in $\mathbb{Z}[\sqrt{-5}]$.

(7) Let d be a square free number, with $d < -1$ and $d \equiv -1 \pmod{4}$. Show that \mathcal{O}_K for $K = \mathbb{Q}(\sqrt{d})$ is not a UFD.