EXERCISES SET 10

1.– Let L/K be a Galois extension of number fields. Let v be a place of K corresponding to a prime p, and w a place of L corresponding to a prime \mathfrak{q} above p. Show that any automorphism of L over K that fixes \mathfrak{q} extends continuously to an automorphism of L_w over K_v. Show that L_w/K_v is Galois and that the decomposition group at p in $\text{Gal}(L/K)$ is isomorphic to $\text{Gal}(L_w/k_b)$.

2.– Concept check: Is \mathbb{Q}_p complete? locally compact? Is \mathbb{C}_p complete? locally compact?

3.– What is the image of the absolute value on \mathbb{Q}_p? on \mathbb{C}_p?

4.– Let $L = \mathbb{Q}_p[X]/(X^n - a)$, where $a \in \mathbb{Q}_p$ is such that $v_p(a)$ is coprime to n. Show that L is a field, and a totally ramified extension of \mathbb{Q}_p.

5.– Let K be a local field, A its ring of elements of absolute value less than 1, \mathfrak{m} the maximal ideal of A. Let P be an irreducible monic polynomial in $A[X]$. Show that $\overline{P}(X) \in A/\mathfrak{m}[X]$ is a power of an irreducible polynomial.

6.– Let K be either a number field or a finite extension of \mathbb{Q}_l for some prime l. Let p be a fixed prime, and for every integer n let ζ_n be a p^n-th primitive root of unity in \overline{K} (a fixed algebraic closure of K). We choose the ζ_n’s so that $\zeta_p^n = \zeta_{n-1}$. Let $K_n = K(\zeta_n)$.

a.– Show that K_n is Galois over K, and construct an isomorphism from $\text{Gal}(K_n/K)$ on a subgroup of $(\mathbb{Z}/p^n\mathbb{Z})^*$ that sends σ to a if $\sigma(\zeta_n) = \zeta_n^a$.

b.– Let $G_K = \text{Gal}(\overline{K}/K)$. We note $\chi_n : G_K \to (\mathbb{Z}/p^n\mathbb{Z})^*$ the group homomorphism obtained by composing the Galois-theoretic map $G_K \to \text{Gal}(K_n/K)$ with the map $\text{Gal}(K_n/K) \to (\mathbb{Z}/p^n\mathbb{Z})^*$ of question a. Show that there exists a unique map $\chi : G_k \to \mathbb{Z}_p^*$ such that $\chi(\sigma) \equiv \chi_n(\sigma) \pmod{p^n}$. The map χ is called the cyclotomic character of G_K.

c.– Show that χ is continuous (for the p-adic topology on \mathbb{Z}_p^* and the Krull topology on G_K - look up in a book on Galois theory what it is if needed).

d.– Show that the image of χ has finite index in \mathbb{Z}_p^*. What is this index when $K = \mathbb{Q}$? When $K = \mathbb{Q}_l$?