1.– Let K be a number field, \mathbb{A}_K its adèle ring, and w a place of K. The completion K_w can be embeded in \mathbb{A}_K by sending $x \in K_w$ to the adèle (x_v) with $x_v = 1$ if $v \neq w$, and $x_v = x$. Show that K_w thus embeded in \mathbb{A}_K is a closed subspace.

What about the map $K_w \to \mathbb{A}_K/K$? Show that it is injective, and realize an homeomorphism of K_w onto its image.

2.– Same question as in 1. but with K^*, A^*_K and K^*_w.

3.– Let X be a scheme of finite type over spec \mathbb{Q}. To simplify, we may assume that X is affine, so

$$X = \text{spec } \mathbb{Q}[T_1, \ldots, T_n]/(P_1, \ldots, P_r)$$

though in a non canonical way.

a.– Since \mathbb{Q} is a subfield of \mathbb{A}_Q (by the diagonal embedding), it makes sense to talk of $X(\mathbb{A}_Q)$. A writing of X as in (1) defines an embedding of $X(\mathbb{A}_Q)$ into \mathbb{A}_Q^n. Show that the subspace topology on $X(\mathbb{A}_Q)$ does not depend on the writing (1). Show that for that topology, $X(\mathbb{A}_Q)$ is locally compact.

b.– A model of X over spec \mathbb{Z} is a scheme Y of finite type over spec \mathbb{Z} together with an isomorphism of schemes over \mathbb{Q} $Y \otimes \text{spec } \mathbb{Q} \simeq X$. Show that X always have a model Y. Show that any two models Y_1 and Y_2 of X become isomorphic on a non empty open subscheme of spec \mathbb{Z}. Deduce that $Y_1(Z_p) = Y_2(Z_p)$ for almost all primes p.

c.– Consider the restricted product $\prod'_v X(\mathbb{Q}_v)$ where the compact subspace are $Y(Z_p)$ for a chosen model Y (where v is the p-adic finite place). Show that this restricted product does not depend on the model Y chosen. Show that it is in natural bijection with $X(\mathbb{A}_Q)$.

d.– Are the topology on $X(\mathbb{A}_Q)$ and on the restricted product of c. the same?

1. CHARACTERS

Those exercises are a preparation of the study of Hecke characters that will be detailed in the next exercises set.

Let G be locally compact group. A character of G is a continuous morphism from G to \mathbb{C}^*. If the image of the character is in the unit circle of \mathbb{C}, the character is called unitary.

1.– Let G^{ab} be the quotient of G by the closure C of the derived subgroup (i.e the group generated by commutators $aba^{-1}b^{-1}$) of G. Show that C is normal, so G^{ab} is a group. Show that any character of G factors through G^{ab}.
2. Show that a character of a torsion group (in particular, a finite group) is always unitary. Same question for a compact group.

3. Show that all characters of \mathbb{R} is of the form $t \mapsto e^{\alpha t}$ for some complex number α. Such a character is unitary if and only if α is purely imaginary.

4. Show that all characters of \mathbb{R}^* are of the form $x \mapsto \epsilon(x)^n |x|^\alpha$ where $n = 0$ or 1, $\epsilon(x)$ is the sign ± 1 of x and α is a complex number. When is such a character unitary?

5. Determine all characters of $\text{Gl}_n(\mathbb{R})$. (use 1. and 4. and the fact the derived subgroup of $\text{Gl}_n(\mathbb{R})$ is $\text{Sl}_n(\mathbb{R})$.)

6. Determine all characters of \mathbb{C}^*