EXERCISES SET 3

1. Discriminant

1.– Supply the proof not given in class for the proposition: the discriminant
\(D \) of the module \(A \oplus A x \oplus \cdots \oplus A x^{n-1} \) (where \(x \) is an integral element over \(A \) whose minimal polynomial is a monic polynomial \(P(X) \in A[X] \) of degree \(n \)) is \(\prod_{i \neq j} (x_i - x_j) \) where \(x_1, \ldots, x_n \) are the roots of \(P \) in some algebraic closure of \(K \). (You can proceed as follows: By mimicking the argument seen in class to prove that \(D \) is not 0, show that \(D \) is the square of the determinant of the matrix \((x_j^i)_{i,j}\). Then compute a Vandermond determinant).

2.– The quantity \(\prod_{i \neq j} (x_i - x_j) \) when the \(x_i \)'s are the roots of a polynomial \(P \) is called the discriminant of the polynomial \(P \). Show that the discriminant is invariant by changing the polynomial by the change of variable \(X \mapsto X + a \). Compute the discriminant of the polynomial \(X ^ n + a X + b \).

3.– Prove that if \(L = K[x] \) is a separable extension, and \(P(X) \) is the minimal polynomial of \(x \), then the discriminant of \(P \) is \(N_{L/K}(P'(x)) \).

4.– With the notations of the above exercise, let \(A \) be a subring of \(K \) which is a Dedekind domain and assume that \(x \) is integral over \(A \). Show that if \(Q(X) \) is any polynomial in \(A[X] \) such that \(Q(x) = 0 \), then the discriminant of \(A[x] \) over \(A \) divides \(N_{K/Q}(Q'(x)) \). (hint: reduce to the case where \(A \) is principal and use that \(A[x] \) is an UFD).

5.– Let \(x \) be a root in \(\mathbb{C} \) of \(X ^ 3 + X + 1 = 0 \), and let \(K = \mathbb{Q}(x) \). Prove that \(\mathcal{O}_K = \mathbb{Z}[x] \).

6.– Let \(A \) a Dedekind domain, \(K \) its fraction field, \(L \) a finite separable extension of \(K \) of degree \(n \), \(B \) the ring of elements in \(L \) that are integral over \(A \), and \(M \) a free \(A \)-module of rank \(n \) of \(B \). Let’s call \(e_1, \ldots, e_n \) a basis of \(M \) and \(D \) the discriminant of \(M \) over \(A \) (considered as an element of \(K \) modulo a (squared) unit of \(A \)). Let \(x \in L \). Show that if \(\text{tr}(xe_i) \in A \) for \(i = 1, \ldots, n \), then \(Dx \in M \).

In particular, then \(DB \subset M \).

2. An example of a ring of algebraic integers without a primitive element

This is an adaption of an exercise of Pierre Samuel’s book “Théorie algébrique des nombres”.

Let \(p, q \) be two prime numbers greater than 3, \(p \neq q \), such that \(p^2 q \neq \pm 1 \) (mod 9). Let \(u = (p^2 q)^{1/3} \) and \(v = (pq^2)^{1/3} \).

1.– Show that \(K := \mathbb{Q}(u) = \mathbb{Q}(v) \) is a cubic field of degree 3. Show that \(u \in \mathcal{O}_K \) and \(v \in \mathcal{O}_K \). Let \(A \) be be the sub-\(\mathbb{Z} \)-module of \(\mathcal{O}_K \) generated by 1,
u, and v. Show that A has rank 3 (in others words, 1, u, and v is a Z-basis of A) and that A is a subring of O_K.

In the following questions 2 to 6 we aim to prove that $A = O_K$.

2.– Show that there is a prime ideal q of O_K such that $qO_K = q^3$ (in other words, q is totally ramified in K – use $u^3 = p^3q$), and similarly a prime ideal p of O_K such that $p^3 = pO_K$.

3.– Show that $A \cap q$ is the ideal of A generated by u, v and q. Show that the inclusion $A/(A \cap q) \subset O_K/q$ is an equality, and that $O_K = A + q$. Deduce that $O_K = A + qO_K$. Similarly, we have $O_K = A + pO_K$.

4.– Compute $(u+1)^3$ and $(u-1)^3$. Deduce that $3O_K$ is the cube of a prime ideal, and as in the above question, that $O_K = A + 3O_K$.

5.– Compute the discriminant D of A over Z. You should find $D = -27p^2q^2$.

6.– Using 3., 4., and 5., show that $O_K = A$.

Now we are ready to prove that there is no x in O_K such that $O_K = \mathbb{Z}[x]$.

By contradiction, assume there is such an x, and write $x = a + bu + cv$ with $a, b, c \in \mathbb{Z}$.

7.– Show that the discriminant of O_K is $-27p^2q^2(b^3p - c^3q)^2$ (this is question is very computational, you may skip it if you wish. If you want to do it, show first that you can assume $a = 0$.)

8.– Deduce that $b^3q - c^3p = \pm 1$. But show that this equation has no solution if q is not a cube modulo p. Find an example of p, q satisfying the hypotheses made on them, and such that $b^3q - c^3p = \pm 1$ has no solutions. Hence $K = \mathbb{Q}(p^2q^{1/3})$ is such that O_K cannot be written as $\mathbb{Z}[x]$ for some $x \in O_K$.

3. EQUATION $p = x^2 + dy^2$ – FIRST STUDY

Let p be an odd prime number, and d a positive integer which is prime to p.

1.– Show that $\left(\frac{d}{p}\right) \equiv d^{(p-1)/2} \pmod{p}$. In particular, -1 is a square mod p if and only if $p \equiv 1 \pmod{4}$.

2.– Show that there exists $x, y \in \mathbb{Z}$, not both divisible by p, such that p divides $x^2 + dy^2$ if and only if $\left(\frac{-d}{p}\right) = 1$.

We now want to investigate the more subtle question :

(1) When can p be written as $x^2 + dy^2$ for some integers x and y?

Note that the question can easily be reduced to the case when d is square free (why?). So we assume that d is square free below. Set $K = \mathbb{Q}(\sqrt{-d})$.

3.– Show that a necessary condition for (1) is that $\left(\frac{-d}{p}\right) = 1$, which is equivalent to the assertion : p splits in K.
4.– Assume \(d \equiv 1 \pmod{4} \). Show that (1) has a positive answer if and only if there is a \(z \) in \(K^* \) such that \(p = N_{K/Q}(z) \). Deduce that a necessary and sufficient condition for (1) is \(p \) splits in \(K \), and if \(p\mathcal{O}_K = \mathfrak{p}_1\mathfrak{p}_2 \), the ideals \(\mathfrak{p}_1 \) and \(\mathfrak{p}_2 \) are principal.

5.– In particular, deduce that a prime is a sum of two squares if and only if it is congruent to 1 mod 4 (or equal to 2).

6.– Give an example of prime \(p \) which is not of the form \(x^2 + 5y^2 \) but yet satisfies \(\left(\frac{-5}{p} \right) = 1 \).

4. **Miscellaneous**

1.– Can you formulate and prove a reciprocity law for the polynomial \(X^2 - 1 \) ? \(X^a - 1 \) ?

2.– Let \(L = \mathbb{Q}(\sqrt{5}, \sqrt{-1}) \).

 a.– Show that \(L \) is Galois over \(\mathbb{Q} \). Compute its Galois group.

 b.– Show that \(\mathcal{O}_K = \mathbb{Z}[\sqrt{-1}, \frac{1 + \sqrt{5}}{2}] \). (Hint: compute the discriminant of that ring over \(\mathbb{Z}[i] \).)

 c.– Show that the only primes of \(\mathbb{Q} \) that ramify in \(L \) are 2 and 5.

 d.– For \(l \) a prime number different from 2 and 5, calculate its Frobenius in \(\text{Gal}(L/\mathbb{Q}) \).

3.– Compute \(\left(\frac{1123}{234} \right) \).