Extending tests for convergence of number series

Elijah Liflyand, Sergey Tikhonov, and Maria Zeltser

September, 2012
Main Goal:
Relax the monotonicity assumption for the sequence of terms of the series.
Main Goal:
Relax the monotonicity assumption for the sequence of terms of the series.

- In various well-known tests for convergence/divergence of number series

\[\sum_{k=1}^{\infty} a_k, \]

with positive \(a_k\), monotonicity of the sequence of these \(a_k\) is the basic assumption.
Goals and History

Main Goal:
Relax the monotonicity assumption for the sequence of terms of the series.

- In various well-known tests for convergence/divergence of number series

\[
\sum_{k=1}^{\infty} a_k,
\]

(1)

with positive \(a_k\), monotonicity of the sequence of these \(a_k\) is the basic assumption.

- Such series are frequently called monotone series.
Goals and History

Main Goal:
Relax the monotonicity assumption for the sequence of terms of the series.

- In various well-known tests for convergence/divergence of number series

\[\sum_{k=1}^{\infty} a_k, \]

with positive \(a_k \), monotonicity of the sequence of these \(a_k \) is the basic assumption.

- Such series are frequently called monotone series.

- Tests by Abel, Cauchy, de la Vallee Poussin, Dedekind, Dirichlet, du Bois Reymond, Ermakov, Leibniz, Maclaurin, Olivier, Sapogov, Schlömilch are related to monotonicity.
References

Books:

Books:

Books:

Books:

References

Books:

In its initial form the Maclaurin-Cauchy integral test reads as follows:

Consider a non-negative monotone decreasing function f defined on $[1, \infty)$. Then the series

$$\sum_{k=1}^{\infty} f(k)$$

converges if and only if the integral

$$\int_{1}^{\infty} f(t) \, dt$$

is finite. In particular, if the integral diverges, then the series diverges.
Ermakov’s test.

In its simplest form, it is given as follows. Let f be a continuous (this is not necessary) non-negative monotone decreasing function for $t > 1$. If for t large enough

$$f(e^t) e^t / f(t) \leq q < 1,$$

then series (2) converges, while if

$$f(e^t) e^t / f(t) \geq 1,$$

then series (2) diverges.

In fact, it is known that one can get a family of tests by replacing e^t with a positive increasing function $\phi(t)$ satisfying certain properties.

We will extend such a more general assertion.
Ermakov’s test.

- In its simplest form, it is given as follows.
Ermakov’s test.

- In its simplest form, it is given as follows.

- Let f be a continuous (this is not necessary) non-negative monotone decreasing function for $t > 1$.
Tests

Ermakov’s test.

- In its simplest form, it is given as follows.

- Let f be a continuous (this is not necessary) non-negative monotone decreasing function for $t > 1$.

- If for t large enough $f(e^t)e^t/f(t) \leq q < 1$, then series (2) converges,
Tests

Ermakov’s test.

- In its simplest form, it is given as follows.

- Let f be a continuous (this is not necessary) non-negative monotone decreasing function for $t > 1$.

- If for t large enough $f(e^t)e^t/f(t) \leq q < 1$, then series (2) converges,

- while if $f(e^t)e^t/f(t) \geq 1$, then series (2) diverges.
Ermakov’s test.

- In its simplest form, it is given as follows.

- Let f be a continuous (this is not necessary) non-negative monotone decreasing function for $t > 1$.

- If for t large enough $f(e^t)e^t/f(t) \leq q < 1$, then series (2) converges,

- while if $f(e^t)e^t/f(t) \geq 1$, then series (2) diverges.

- In fact, it is known that one can get a family of tests by replacing e^t with a positive increasing function $\varphi(t)$ satisfying certain properties.
Tests

Ermakov’s test.

- In its simplest form, it is given as follows.

- Let \(f \) be a continuous (this is not necessary) non-negative monotone decreasing function for \(t > 1 \).

- If for \(t \) large enough \(f(e^t)e^t/f(t) \leq q < 1 \), then series (2) converges,

- while if \(f(e^t)e^t/f(t) \geq 1 \), then series (2) diverges.

- In fact, it is known that one can get a family of tests by replacing \(e^t \) with a positive increasing function \(\varphi(t) \) satisfying certain properties.

- We will extend such a more general assertion.
Tests

The well known Cauchy condensation test states that
The well known Cauchy condensation test states that

- If \(\{a_k\} \) is a positive monotone decreasing null sequence, then the series (1) and

\[
\sum_{k=1}^{\infty} 2^k a_{2^k}
\]

converge or diverge simultaneously.
The well known Cauchy condensation test states that:

- If $\{a_k\}$ is a positive monotone decreasing null sequence, then the series (1) and

$$\sum_{k=1}^{\infty} 2^k a_{2^k}$$

converge or diverge simultaneously.

- This assertion is a partial case of the following classical result due to Schlömilch.
Tests

The well known Cauchy condensation test states that

- If \(\{a_k\} \) is a positive monotone decreasing null sequence, then the series (1) and

\[
\sum_{k=1}^{\infty} 2^k a_{2^k}
\]

converge or diverge simultaneously.

- This assertion is a partial case of the following classical result due to Schlömilch.
- Let (1) be a series whose terms are positive and non-increasing,
and let

Tests

Let $u_0 < 1 < 2 < \ldots$ be a sequence of positive integers such that $\Delta u_k - 1 \leq C$. Then series (1) converges if and only if the series $\sum_{k=1}^{\infty} (u_k + 1 - u_k) a_u k$ converges.

In the theory of monotone series there are statements on the behavior of its terms. Such is Abel–Olivier's kth term test: Let ${a_k}$ be a positive monotone null sequence. If series (1) is convergent, then ka_k is a null sequence.

Liflyand et al

Extending monotonicity

September, 2012
and let

\[u_0 < u_1 < u_2 < \ldots \] be a sequence of positive integers such that

\[\frac{\Delta u_k}{\Delta u_{k-1}} \leq C. \]

Then series (1) converges if and only if the series

\[\sum_{k=1}^{\infty} \Delta u_k a_{u_k} = \sum_{k=1}^{\infty} (u_{k+1} - u_k) a_{u_k} \]

converges.
and let

- \(u_0 < u_1 < u_2 < \ldots \) be a sequence of positive integers such that

\[
\frac{\Delta u_k}{\Delta u_{k-1}} \leq C.
\]

Then series (1) converges if and only if the series

\[
\sum_{k=1}^{\infty} \Delta u_k a_{u_k} = \sum_{k=1}^{\infty} (u_{k+1} - u_k) a_{u_k}
\]

converges.

- In the theory of monotone series there are statements on the behavior of its terms. Such is Abel–Olivier’s \(k \)th term test:
and let

- $w_0 < w_1 < w_2 < \ldots$ be a sequence of positive integers such that

$$\frac{\Delta u_k}{\Delta u_{k-1}} \leq C.$$

Then series (1) converges if and only if the series

$$\sum_{k=1}^{\infty} \Delta u_k a_{u_k} = \sum_{k=1}^{\infty} (u_{k+1} - u_k) a_{u_k}$$

converges.

In the theory of monotone series there are statements on the behavior of its terms. Such is Abel–Olivier’s kth term test:

- Let $\{a_k\}$ be a positive \textit{monotone null sequence}. If series (1) is convergent, then ka_k is a null sequence.
Sapogov’s test reads as follows.

If \(\{b_k\} \) is a positive monotone increasing sequence, then the series

\[
\sum_{k=1}^{\infty} \left(1 - \frac{b_k}{b_{k+1}} \right)
\]

as well as

\[
\sum_{k=1}^{\infty} \left(\frac{b_{k+1}}{b_k} - 1 \right)
\]

converges if the sequence \(\{b_k\} \) is bounded and diverges otherwise.
The tests of Dedekind and of du Bois Reymond are united as the next assertion.
Tests

The tests of Dedekind and of du Bois Reymond are united as the next assertion.

- **Sequence of bounded variation** – \(\{a_k\} \in BV: \sum |a_{k+1} - a_k| < \infty \).
The tests of Dedekind and of du Bois Reymond are united as the next assertion.

- **Sequence of bounded variation** – \(\{a_k\} \in BV \): \(\sum |a_{k+1} - a_k| < \infty \).

- Let \(\{a_k\} \) and \(\{b_k\} \) be two sequences.

 (i) If \(\{a_k\} \in BV \), \(\{a_k\} \) is a null sequence, and the sequence of partial sums of \(\sum b_k \) is bounded, then the series \(\sum_{k=1}^{\infty} a_k b_k \) is convergent.

 (ii) If \(\{a_k\} \in BV \) and \(\sum b_k \) is convergent, then the series \(\sum_{k=1}^{\infty} a_k b_k \) is convergent.
The tests of Dedekind and of du Bois Reymond are united as the next assertion.

- **Sequence of bounded variation** – \(\{a_k\} \in BV \): \(\sum |a_{k+1} - a_k| < \infty \).
- **Let** \(\{a_k\} \) **and** \(\{b_k\} \) **be two sequences.**

 (i) **If** \(\{a_k\} \in BV \), \(\{a_k\} \) **is a null sequence, and the sequence of partial sums of** \(\sum b_k \) **is bounded, then the series** \(\sum_{k=1}^{\infty} a_k b_k \) **is convergent.**

 (ii) **If** \(\{a_k\} \in BV \) **and** \(\sum b_k \) **is convergent, then the series** \(\sum_{k=1}^{\infty} a_k b_k \) **is convergent.**

- **Two well-known and widely used corollaries of this test -**
The tests of Dedekind and of du Bois Reymond are united as the next assertion.

- **Sequence of bounded variation** \(\{a_k\} \in BV \): \(\sum |a_{k+1} - a_k| < \infty \).

- Let \(\{a_k\} \) and \(\{b_k\} \) be two sequences.

 (i) If \(\{a_k\} \in BV \), \(\{a_k\} \) is a null sequence, and the sequence of partial sums of \(\sum b_k \) is bounded, then the series \(\sum_{k=1}^{\infty} a_k b_k \) is convergent.

 (ii) If \(\{a_k\} \in BV \) and \(\sum b_k \) is convergent, then the series \(\sum_{k=1}^{\infty} a_k b_k \) is convergent.

- Two well-known and widely used corollaries of this test -

 - Dirichlet’s and Abel’s tests - involve **monotone** sequences.
Tests

The first one is as follows.

Let \(\{a_k\} \) be a monotone null sequence and \(\{b_k\} \) be a sequence such that the sequence of its partial sums is bounded. Then the series \(\sum_{k=1}^{\infty} a_k b_k \) is convergent.

One of corollaries of this test is the celebrated Leibniz test:

Let \(\{a_k\} \) be a monotone null sequence. Then the series \(\sum_{k=1}^{\infty} (-1)^k a_k \) is convergent.

Further, Abel's test reads as follows.

Let \(\{a_k\} \) be a bounded monotone sequence and \(\sum b_k \) a convergent series. Then the series \(\sum_{k=1}^{\infty} a_k b_k \) is convergent.
Tests

The first one is as follows.

- Let \(\{a_k\} \) be a monotone null sequence and \(\{b_k\} \) be a sequence such that the sequence of its partial sums is bounded. Then the series \(\sum_{k=1}^{\infty} a_k b_k \) is convergent.
The first one is as follows.

- Let \(\{a_k\} \) be a monotone null sequence and \(\{b_k\} \) be a sequence such that the sequence of its partial sums is bounded. Then the series \(\sum_{k=1}^{\infty} a_k b_k \) is convergent.

- One of corollaries of this test is the celebrated Leibniz test:
 - Let \(\{a_k\} \) be a monotone null sequence. Then the series \(\sum_{k=1}^{\infty} (-1)^k a_k \) is convergent.
The first one is as follows.

- Let \(\{a_k\} \) be a monotone null sequence and \(\{b_k\} \) be a sequence such that the sequence of its partial sums is bounded. Then the series \(\sum_{k=1}^{\infty} a_k b_k \) is convergent.

- One of corollaries of this test is the celebrated Leibniz test:
 Let \(\{a_k\} \) be a monotone null sequence. Then the series \(\sum_{k=1}^{\infty} (-1)^k a_k \) is convergent.

- Further, Abel’s test reads as follows.
 Let \(\{a_k\} \) be a bounded monotone sequence and \(\sum_k b_k \) a convergent series. Then the series \(\sum_{k=1}^{\infty} a_k b_k \) is convergent.
Let us introduce certain classes of functions and sequences more general than monotone.

Definition

We call a non-negative null (that is, tending to zero at infinity) sequence \(\{a_k\} \) weak monotone, written WMS, if for some positive absolute constant \(C \) it satisfies

\[a_k \leq Ca_n \]

for any \(k \in [n, 2n] \).

To introduce a counterpart for functions, we will assume all functions to be defined on \((0, \infty)\), locally of bounded variation, and vanishing at infinity.
Let us introduce certain classes of functions and sequences more general than monotone.

Definition

We call a non-negative null (that is, tending to zero at infinity) sequence \(\{a_k\} \) *weak monotone*, written WMS, if for some positive absolute constant \(C \) it satisfies

\[
a_k \leq C a_n \quad \text{for any} \quad k \in [n, 2n].
\]
Classes of sequences and functions

Let us introduce certain classes of functions and sequences more general than monotone.

Definition
We call a non-negative null (that is, tending to zero at infinity) sequence \(\{a_k\} \) weak monotone, written WMS, if for some positive absolute constant \(C \) it satisfies

\[a_k \leq C a_n \quad \text{for any} \quad k \in [n, 2n]. \]

To introduce a counterpart for functions, we will assume all functions to be defined on \((0, \infty)\), locally of bounded variation, and vanishing at infinity.
Classes of sequences and functions

Definition

We say that a non-negative function f defined on $(0, \infty)$, is weak monotone, written WM, if

$$f(t) \leq Cf(x) \quad \text{for any} \quad t \in [x, 2x].$$
Classes of sequences and functions

Definition

We say that a non-negative function f defined on $(0, \infty)$, is **weak monotone**, written WM, if

$$f(t) \leq Cf(x) \quad \text{for any } \quad t \in [x, 2x].$$

Setting $a_k = f(k)$ in this case, we obtain $\{a_k\} \in WMS$.

Clearly, in these definitions $2n$ and $2x$ can be replaced by $\lfloor cn \rfloor$ (where $\lfloor a \rfloor$ denotes the integer part of a) and cx, respectively, with some $c > 1$ and another constant C. In some problems one should consider a smaller class than WMS.

Liflyand et al
Extending monotonicity
September, 2012
We say that a non-negative function f defined on $(0, \infty)$, is \textit{weak monotone}, written WM, if

$$f(t) \leq Cf(x) \quad \text{for any} \quad t \in [x, 2x].$$

- Setting $a_k = f(k)$ in this case, we obtain $\{a_k\} \in WMS$.
- Clearly, in these definitions $2n$ and $2x$ can be replaced by $[cn]$ (where $[a]$ denotes the integer part of a) and cx, respectively, with some $c > 1$ and another constant C.

\textbf{Liflyand et al} Extending monotonicity September, 2012 12 / 28
Classes of sequences and functions

Definition

We say that a non-negative function f defined on $(0, \infty)$, is \textit{weak monotone}, written WM, if

$$f(t) \leq Cf(x) \quad \text{for any} \quad t \in [x, 2x].$$

- Setting $a_k = f(k)$ in this case, we obtain $\{a_k\} \in WMS$.
- Clearly, in these definitions $2n$ and $2x$ can be replaced by $[cn]$ (where $[a]$ denotes the integer part of a) and cx, respectively, with some $c > 1$ and another constant C.
- In some problems one should consider a smaller class than WMS.
Denote $\Delta a_k = a_{k+1} - a_k$.
Denote $\Delta a_k = a_{k+1} - a_k$.

- **Definition.** A positive null sequence $\{a_k\}$ is called general monotone if it satisfies

$$\sum_{k=n}^{2n} |\Delta a_k| \leq Ca_n,$$

for any n and some absolute constant C.
Denote $\Delta a_k = a_{k+1} - a_k$.

- **Definition.** A positive null sequence $\{a_k\}$ is called **general monotone** if it satisfies

 $\sum_{k=n}^{2n} |\Delta a_k| \leq C a_n,$

 for any n and some absolute constant C.

- The class of **quasi-monotone** sequences,
Denote $\Delta a_k = a_{k+1} - a_k$.

- **Definition.** A positive null sequence $\{a_k\}$ is called **general monotone** if it satisfies

$$\sum_{k=n}^{2n} |\Delta a_k| \leq C a_n,$$

for any n and some absolute constant C.

- The class of **quasi-monotone** sequences, that is, $\{a_k\}$ such that there exists $\tau > 0$ so that $k^{-\tau} a_k \downarrow$,

The class of quasi-monotone sequences,
Denote $\Delta a_k = a_{k+1} - a_k$.

- **Definition.** A positive null sequence $\{a_k\}$ is called general monotone if it satisfies

 $$\sum_{k=n}^{2n} |\Delta a_k| \leq C a_n,$$

 for any n and some absolute constant C.

- The class of quasi-monotone sequences, that is, $\{a_k\}$ such that there exists $\tau > 0$ so that $k^{-\tau} a_k \downarrow$,
- is a proper subclass of GMS.

Liflyand et al Extending monotonicity September, 2012 13 / 28
Denote $\Delta a_k = a_{k+1} - a_k$.

- **Definition.** A positive null sequence $\{a_k\}$ is called **general monotone** if it satisfies

$$2n \sum_{k=n}^{2n} |\Delta a_k| \leq Ca_n,$$

for any n and some absolute constant C.

- The class of **quasi-monotone** sequences,
- that is, $\{a_k\}$ such that there exists $\tau > 0$ so that $k^{-\tau} a_k \downarrow$,
- is a proper subclass of GMS.
- One of the simple basic properties of GMS is $GMS \subsetneq WMS$.

Classes of sequences and functions
We say that a non-negative function \(f \) is general monotone, \(GM \), if for all \(x \in (0, \infty) \)

\[
\int_x^{2x} |df(t)| \leq Cf(x).
\]
Classes of sequences and functions

A similar function class:

Definition

We say that a non-negative function f is general monotone, GM, if for all $x \in (0, \infty)$

$$\int_{x}^{2x} |df(t)| \leq Cf(x).$$

- We just remark that if $f(\cdot)$ is a GM function,
A similar function class:

Definition

We say that a non-negative function f is general monotone, GM, if for all $x \in (0, \infty)$

$$\int_{x}^{2x} |df(t)| \leq Cf(x).$$

We just remark that if $f(\cdot)$ is a GM function,
then for $a_k = f(k)$ there holds $\{a_k\} \in GMS$.

And of course $GM \subset W$.

Classes of sequences and functions
A similar function class:

Definition

We say that a non-negative function f is general monotone, GM, if for all $x \in (0, \infty)$

$$
\int_0^{2x} \left| df(t) \right| \leq Cf(x).
$$

- We just remark that if $f(\cdot)$ is a GM function,
- then for $a_k = f(k)$ there holds $\{a_k\} \in GMS$.
- And of course $GM \subset WM$.

Liflyand et al
Extending monotonicity
September, 2012 14 / 28
An extension of the Maclaurin-Cauchy integral test reads as follows:

Theorem

Let f be a WM function. Then the series

$$\sum_{k=1}^{\infty} f(k)$$

and integral

$$\int_1^{\infty} f(t) \, dt$$

converge or diverge simultaneously.
An extension of Ermakov’s test:

Theorem

Let f be a WM function and let $\varphi(t)$ be a monotone increasing, positive function having a continuous derivative and satisfying $\varphi(t) > t$ for all t large enough. If for t large enough

$$\frac{f(\varphi(t))}{f(t)} \frac{\varphi'(t)}{f(t)} \leq q < 1,$$

then series (2) converges, while if

$$\frac{f(\varphi(t))}{f(t)} \frac{\varphi'(t)}{f(t)} \geq 1,$$

then series (2) diverges.
Theorem

Let \(\{ u_k \} \) be an increasing sequence of positive numbers such that \(u_{k+1} = O(u_k) \) and \(u_k \to \infty \).
Theorem

Let \(\{u_k\} \) be an increasing sequence of positive numbers such that \(u_{k+1} = O(u_k) \) and \(u_k \to \infty \).

- Let \(f \) be a WM function. Then both series
 \[
 \sum_{k=1}^{\infty} f(u_k) \Delta u_k \quad \text{and} \quad \sum_{k=1}^{\infty} f(u_{k+1}) \Delta u_k
 \]
 converge (or diverge) with \(\int_1^{\infty} f(t) \, dt \).
Let \(\{u_k\} \) be an increasing sequence of positive numbers such that \(u_{k+1} = O(u_k) \) and \(u_k \to \infty \).

Let \(f \) be a WM function. Then both series

\[
\sum_{k=1}^{\infty} f(u_k) \Delta u_k \quad \text{and} \quad \sum_{k=1}^{\infty} f(u_{k+1}) \Delta u_k
\]

converge (or diverge) with \(\int_1^{\infty} f(t) \, dt \).

Let \(\{a_k\} \) be a WMS. Then (1) converges if and only if the series

\[
\sum_{k=1}^{\infty} \Delta u_k a_{u_k} = \sum_{k=1}^{\infty} (u_{k+1} - u_k) a_{u_k}
\]

converges.
Extension of ”monotone” tests

An extension of Abel–Olivier’s kth term test:

Theorem

Let $\{a_k\}$ be a WMS. If series (1) converges, then ka_k is a null sequence.
An extension of Abel–Olivier’s kth term test:

Theorem

Let $\{a_k\}$ be a WMS. If series (1) converges, then ka_k is a null sequence.

- Analyzing one Dvoretzky’s result and its proof,
Extension of "monotone" tests

An extension of Abel–Olivier’s kth term test:

Theorem

Let $\{a_k\}$ be a WMS. If series (1) converges, then ka_k is a null sequence.

- Analyzing one Dvoretzky’s result and its proof,
- we obtain the following statement.

Theorem

If $\{a_k\}, \{b_k\} \in WMS$, and the series are convergent and divergent, respectively, then for every $M > 1$ there exist infinitely many R_j, $R_j \to \infty$, such that for all k with $R_j \leq k \leq MR_j$, we have $a_k < b_k$.
Extension of ”monotone” tests

Our next result is ”dual” to the above Schlömilch-type extensions.
Our next result is "dual" to the above Schlömilch-type extensions.

- We recall that the increasing sequence \(\{u_k\} \) is called **lacunary** if \(u_{k+1}/u_k \geq q > 1 \).
Extension of "monotone" tests

Our next result is "dual" to the above Schlömilch-type extensions.

- We recall that the increasing sequence $\{u_k\}$ is called lacunary if $u_{k+1}/u_k \geq q > 1$.
- A more general class of sequences is the one in which each sequence can be split into finitely-many lacunary sequences. In the latter case we will write $\{u_k\} \in \Lambda$.
Extension of ”monotone” tests

Our next result is ”dual” to the above Schlömilch-type extensions.

- We recall that the increasing sequence $\{u_k\}$ is called lacunary if $u_{k+1}/u_k \geq q > 1$.
- A more general class of sequences is the one in which each sequence can be split into finitely-many lacunary sequences. In the latter case we will write $\{u_k\} \in \Lambda$.
- This is true if and only if

$$\sum_{j=1}^{k} u_j \leq C u_k.$$
Extension of "monotone" tests

Our next result is "dual" to the above Schlömilch-type extensions.

- We recall that the increasing sequence \(\{u_k\} \) is called \textit{lacunary} if \(\frac{u_{k+1}}{u_k} \geq q > 1 \).
- A more general class of sequences is the one in which each sequence can be split into finitely-many lacunary sequences. In the latter case we will write \(\{u_k\} \in \Lambda \).
- This is true if and only if

 \[
 \sum_{j=1}^{k} u_j \leq C u_k.
 \]

- In different terms, \(\{u_k\} \in \Lambda \) is true if and only if there exists \(r \in \mathbb{N} \) such that

 \[
 \frac{u_{k+r}}{u_k} \geq q > 1, \quad k \in \mathbb{N}.
 \]
We denote \(\overline{\Delta} a_{u_k} := a_{u_k} - a_{u_{k+1}} \).

Proposition. Let \(\{ a_k \} \) be a non-negative WMS, and let a sequence \(\{ u_k \} \) be such that \(\{ u_k \} \in \Lambda \) and \(u_{k+1} = O(u_k) \).

Then the series (1),

\[
\sum_{k=1}^{\infty} u_k \overline{\Delta} a_{u_k},
\]

and

\[
\sum_{k=1}^{\infty} u_k a_{u_k}
\]

converge or diverge simultaneously.
General monotonicity

It is also possible to get equiconvergence results for an important case $u_n = n$, where the lacunarity can no more help.
General monotonicity

It is also possible to get equiconvergence results for an important case $u_n = n$, where the lacunarity can no more help.

- We proceed to a smaller class than WMS. Indeed, assuming general monotonicity of the sequences, we prove the following result.
General monotonicity

It is also possible to get equiconvergence results for an important case $u_n = n$, where the lacunarity can no more help.

- We proceed to a smaller class than WMS. Indeed, assuming general monotonicity of the sequences, we prove the following result.
- **Proposition.** Let $\{a_k\}$ be a GMS. Then series (1) and

\[
\sum_k k|\Delta a_k|
\]

converge or diverge simultaneously.

Liflyand et al
Extending monotonicity
September, 2012 21 / 28
It is also possible to get equiconvergence results for an important case $u_n = n$, where the lacunarity can no more help.

- We proceed to a smaller class than WMS. Indeed, assuming general monotonicity of the sequences, we prove the following result.

Proposition. Let $\{a_k\}$ be a GMS. Then series $\sum k|\Delta a_k|$ converge or diverge simultaneously.

A similar result for functions:

General monotonicity

It is also possible to get equiconvergence results for an important case \(u_n = n \), where the lacunarity can no more help.

- We proceed to a smaller class than \(WMS \). Indeed, assuming general monotonicity of the sequences, we prove the following result.

- **Proposition.** Let \(\{a_k\} \) be a GMS. Then series (1) and

\[
\sum_k k|\Delta a_k|
\]

converge or diverge simultaneously.

- A similar result for functions:

Proposition. Let \(f \) be a \(GM \) function. Then the integrals

\[
\int_1^\infty f(t) \, dt \quad \text{and} \quad \int_1^\infty t|df(t)|
\]

converge or diverge simultaneously.
Negative type results

We now proceed to a group of tests where extending monotonicity to weak monotonicity fails in that or another sense. Sapogov type test cannot be true if \(\{b_k\} \) (as well as \(\{1/b_k\} \)) is WMS. A counterexample can be constructed against generalization of Abel's test. As for extending the Leibniz test, it cannot hold without additional assumption of the boundedness of variation: just take \(a_k = 1/\ln k \) everywhere except \(n = 2k \) where \(a_n = 2/\ln n \).
We now proceed to a group of tests where

- extending **monotonicity** to weak monotonicity fails in that or another sense.
We now proceed to a group of tests where

- extending **monotonicity** to weak monotonicity fails in that or another sense.
- **Sapogov** type test cannot be true if \(\{b_k\} \) (as well as \(\{1/b_k\} \)) is WMS.

A counterexample can be constructed against generalization of Abel's test.

As for extending the Leibniz test, it cannot hold without additional assumption of the boundedness of variation:

- just take \(a_k = 1/\ln k \) everywhere except \(n = 2k \) where \(a_n = 2/\ln n \).
Negative type results

We now proceed to a group of tests where

- extending **monotonicity** to **weak monotonicity** fails in that or another sense.
- **Sapogov** type test cannot be true if \(\{b_k\} \) (as well as \(\{1/b_k\} \)) is **WMS**.
- A counterexample can be constructed against generalization of **Abel’s** test.
We now proceed to a group of tests where

- extending **monotonicity** to weak monotonicity fails in that or another sense.
- **Sapogov** type test cannot be true if \(\{b_k\} \) (as well as \(\{1/b_k\} \)) is WMS.
- A counterexample can be constructed against generalization of Abel’s test.
- As for extending the **Leibniz** test, it cannot hold without additional assumption of the boundedness of variation:
Negative type results

We now proceed to a group of tests where

- extending **monotonicity** to weak monotonicity fails in that or another sense.
- **Sapogov** type test cannot be true if \(\{b_k\} \) (as well as \(\{1/b_k\} \)) is WMS.
- A counterexample can be constructed against generalization of **Abel's** test.
- As for extending the **Leibniz** test, it cannot hold without additional assumption of the boundedness of variation:
 - just take \(a_k = 1/\ln k \) everywhere except \(n = 2^k \) where \(a_n = 2/\ln n \).
Wider classes

We shall show that WMS is, in a sense, the widest class for which such tests are still valid.
We shall show that **WMS** is, in a sense, the **widest** class for which such tests are still valid.

- An immediate natural extension of **WMS** is the class defined by

\[
a_k \leq C \sum_{n=k/2}^{k} \frac{a_n}{n},
\]
Wider classes

We shall show that WMS is, in a sense, the widest class for which such tests are still valid.

- An immediate natural extension of WMS is the class defined by

 \[a_k \leq C \sum_{n=k/2}^{k} \frac{a_n}{n}, \]

- or a bit more general

 \[a_k \leq C' \sum_{n=[k/c]}^{[ck]} \frac{a_n}{n} \]

 for some $c > 1$.

The principle difference between \textit{WMS} and these classes is that the latter two allow certain amount of zero members, unlike \textit{WMS} that forbid even a single zero, i.e., $a_{n_0} = 0$ implies $a_n = 0$ for $n \geq n_0$.

Putting zeros on certain positions, say $k = 2^n$, we easily construct a counterexample to show that the Cauchy condensation test cannot be valid for these classes nor its extensions. In a similar way, just letting a function f to take non-zero values only close to integer points, one sees that the Maclaurin-Cauchy integral test may fail as well.

In conclusion, note that \textit{WMS} is a subclass of the broadly used Δ_2-class,

\textit{Liflyand et al} Extending monotonicity September, 2012 24 / 28
Wider classes

The principle difference between \textit{WMS} and these classes is that the latter two allow certain amount of zero members, unlike \textit{WMS} that forbid even a single zero, i.e., $a_{n_0} = 0$ implies $a_n = 0$ for $n \geq n_0$.

- Putting zeros on certain positions, say $k = 2^n$, we easily construct a counterexample to show that the Cauchy condensation test cannot be valid for these classes nor its extensions.
Wider classes

The principle difference between WMS and these classes is that the latter two allow certain amount of zero members, unlike WMS that forbid even a single zero, i.e., $a_{n_0} = 0$ implies $a_n = 0$ for $n \geq n_0$.

- Putting zeros on certain positions, say $k = 2^n$, we easily construct a counterexample to show that the Cauchy condensation test cannot be valid for these classes nor its extensions.

- In a similar way, just letting a function f to take non-zero values only close to integer points, one sees that the Maclaurin-Cauchy integral test may fail as well.
Wider classes

The principle difference between WMS and these classes is that the latter two allow certain amount of zero members, unlike WMS that forbid even a single zero, i.e., $a_{n_0} = 0$ implies $a_n = 0$ for $n \geq n_0$.

- Putting zeros on certain positions, say $k = 2^n$, we easily construct a counterexample to show that the Cauchy condensation test cannot be valid for these classes nor its extensions.
- In a similar way, just letting a function f to take non-zero values only close to integer points, one sees that the Maclaurin-Cauchy integral test may fail as well.
- In conclusion, note that WMS is a subclass of the broadly used Δ_2-class,
Wider classes

that is, the one
Wider classes

that is, the one

- for which the doubling condition $a_{2^k} \leq C a_k$ holds for each $k \in \mathbb{N}$.

Wider classes

that is, the one

- for which the **doubling condition** $a_{2^k} \leq C a_k$ holds for each $k \in \mathbb{N}$.
- We observe that assuming the doubling condition by no means can guarantee the above tests to be extended.
Wider classes

that is, the one

- for which the **doubling condition** \(a_{2k} \leq C a_k \) holds for each \(k \in \mathbb{N} \).
- We observe that assuming the doubling condition by no means can guarantee the above tests to be extended.
- To illustrate this, the easiest way is to consider **Cauchy’s** condensation test.
Wider classes

that is, the one

- for which the **doubling condition** $a_{2k} \leq Ca_k$ holds for each $k \in \mathbb{N}$.
- We observe that assuming the doubling condition by no means can guarantee the above tests to be extended.
- To illustrate this, the easiest way is to consider **Cauchy’s** condensation test.
- Take $\{a_k\}$ such that

$$a_k = \begin{cases} 2^{-k}, & k \neq 2^n; \\ n^{-2}, & k = 2^n. \end{cases}$$
Wider classes

that is, the one

- for which the **doubling condition** \(a_{2k} \leq C a_k \) holds for each \(k \in \mathbb{N} \).
- We observe that assuming the doubling condition by no means can guarantee the above tests to be extended.
- To illustrate this, the easiest way is to consider Cauchy’s condensation test.
- Take \(\{a_k\} \) such that

\[
 a_k = \begin{cases}
 2^{-k}, & k \neq 2^n; \\
 n^{-2}, & k = 2^n.
 \end{cases}
\]

- This sequence is doubling but not WMS.
Wider classes

that is, the one

- for which the **doubling condition** \(a_{2k} \leq Ca_k \) holds for each \(k \in \mathbb{N} \).
- We observe that assuming the doubling condition by no means can guarantee the above tests to be extended.
- To illustrate this, the easiest way is to consider **Cauchy’s condensation test**.
- Take \(\{a_k\} \) such that

\[
a_k = \begin{cases}
2^{-k}, & k \neq 2^n; \\
n^{-2}, & k = 2^n.
\end{cases}
\]

- This sequence is doubling but not **WMS**.
- Obviously,

\[
\sum_{n=1}^{\infty} 2^n a_{2^n} = \sum_{n=1}^{\infty} \frac{2^n}{n^2}
\]

diverges
The main results may be summarized as the following statement.

\begin{align*}
\int_{1}^{\infty} f(t) \, dt; \\
\sum_{k} f(k) \\
\sum_{k} (u_{k+1} - u_{k}) f(u_{k}) \\
\sum_{k} u_{k} f(u_{k}) \\
\sum_{k} |f(u_{k+1}) - f(u_{k})| \\
\int_{1}^{\infty} \frac{|f(t)|}{t} \, df(t)
\end{align*}
The main results may be summarized as the following statement.

- **Theorem.** Let $f(\cdot) \in WM$. Then the following series and integrals converge or diverge simultaneously:

\[
\int_{1}^{\infty} f(t) \, dt; \\
\sum_{k} f(k); \\
\sum_{k} (u_{k+1} - u_{k}) f(u_{k}); \\
\sum_{k} |u_{k} f(u_{k})|; \\
\sum_{k} |f(u_{k+1}) - f(u_{k})|; \\
\int_{1}^{\infty} \left| \frac{df(t)}{dt} \right|.
\]

provided $f(\cdot)$ is GM.
The main results may be summarized as the following statement.

Theorem. Let \(f(\cdot) \in WM \). Then the following series and integrals converge or diverge simultaneously:

\[
\int_{1}^{\infty} f(t) \, dt; \quad \sum_{k} f(k);
\]
The main results may be summarized as the following statement.

- **Theorem.** Let $f(\cdot) \in WM$. Then the following series and integrals converge or diverge simultaneously:

 \[
 \int_1^\infty f(t) \, dt; \quad \sum_k f(k);
 \]

 \[
 \sum_k (u_{k+1} - u_k)f(u_k), \quad \text{provided} \quad u_k \uparrow, \quad u_{k+1} = O(u_k);
 \]
Overview

The main results may be summarized as the following statement.

- **Theorem.** Let $f(\cdot) \in WM$. Then the following series and integrals converge or diverge simultaneously:

\[
\int_1^\infty f(t) \, dt; \quad \sum_k f(k);
\]

\[
\sum_k (u_{k+1} - u_k) f(u_k), \quad \text{provided} \quad u_k \uparrow, \quad u_{k+1} = O(u_k);
\]

\[
\sum_k u_k f(u_k), \sum_k u_k |f(u_{k+1}) - f(u_k)|, \quad \text{with} \quad u_k \text{ lacunary}, \quad u_{k+1} = O(u_k);
\]
The main results may be summarized as the following statement.

- **Theorem.** Let $f(\cdot) \in WM$. Then the following series and integrals converge or diverge simultaneously:

\[
\int_{1}^{\infty} f(t) \, dt; \quad \sum_{k} f(k);
\]

\[
\sum_{k} (u_{k+1} - u_{k}) f(u_{k}), \quad \text{provided} \quad u_{k} \uparrow, \ u_{k+1} = O(u_{k});
\]

\[
\sum_{k} u_{k} f(u_{k}), \sum_{k} u_{k} |f(u_{k+1}) - f(u_{k})|, \quad \text{with} \ u_{k} \ \text{lacunary}, \ u_{k+1} = O(u_{k});
\]

\[
\sum_{k} k |f(k + 1) - f(k)|, \quad \int_{1}^{\infty} t |df(t)|, \quad \text{provided} \quad f(\cdot) \ \text{is GM}.
\]
Example

Besov space:

For $k > r$, $\theta, r > 0$ and $p \geq 1$

$$\|f\|_{B^{r,p,\theta}} = \left(\frac{1}{t^{r\theta + 1}} \int_0^t \|\omega^{r\theta \omega^k(f; t)}\|_{L^p} dt \right)^{1/\theta}.$$

Equivalent form:

$$\|f\|_{B^{r,p,\theta}} = \left(\int_1^{\infty} \frac{1}{t^{r\theta + 1}} \|\omega^{r\theta \omega^k(f; 1/t)}\|_{L^p} dt \right)^{1/\theta}.$$
Example

Besov space:

- For \(k > r, \theta, r > 0 \) and \(p \geq 1 \)

\[
\| f \|_{B^{r}_{p,\theta}} = \left(\int_{0}^{1} t^{-r\theta - 1} \omega_{k}^{\theta}(f; t) \frac{dt}{t} \right)^{1/\theta}.
\]
Example

Besov space:

- For $k > r$, θ, $r > 0$ and $p \geq 1$

\[
\|f\|_{B_{p,\theta}^r} = \left(\int_0^1 t^{-r\theta - 1} \omega_k^\theta(f; t) p \frac{dt}{t} \right)^{1/\theta}.
\]

- Equivalent form:

\[
\|f\|_{B_{p,\theta}^r} = \left(\int_1^\infty t^{r\theta + 1} \omega_k^\theta(f; 1/t) p \frac{dt}{t} \right)^{1/\theta}.
\]
Example

Since $\omega_k(\omega; t)_p \uparrow$, the function under the integral sign is WM.
Example

Since $\omega_k(f; t)_p \uparrow$, the function under the integral sign is WM.

- Applying generalized Maclaurin-Cauchy and Cauchy condensation tests, we obtain
Example

Since $\omega_k(f; t)_p \uparrow$, the function under the integral sign is WM.

- Applying generalized Maclaurin-Cauchy and Cauchy condensation tests, we obtain
- convenient equivalent form:

$$
\left(\sum_{\nu=0}^{\infty} \left[2^{r\nu} \omega_k(f; 2^{-\nu})_p \right]^\theta \right)^{1/\theta}.
$$