Introduction

Motor-vehicle travel is a mixed blessing for modern times. During the average day in the United States, for example, about 100 people step into a vehicle and do not emerge alive according to data from the 1996 Statistical Abstract of the United States, published by the Bureau of the Census. Crashes are especially poignant if they kill healthy people who otherwise might have led long and productive lives. A 1957 New England Journal of Medicine study found that crashes are usually (>90%) attributed to driver error rather than failures in the vehicle or roadway. The most important factor in driver error is alcohol, contributing to about 40% of fatal collisions in 1994 according to a National Highway Traffic Safety Administration report. The other factors causing driver error are not completely known. A better understanding of such errors might allow people to benefit from motor vehicle travel at a lower personal risk.

One potential driver error is an inappropriate lane change, a vehicle maneuver that may have substantial risks for several reasons. First, it causes the individual to straddle traffic flows and be exposed to two streams of vehicles. Second, it requires the driver to make rapid judgments about sufficient spacing. Third, it increases the hazard related to other vehicles approaching along the driver’s blind spot. Fourth, it disrupts the traffic pattern for following vehicles. The overall risks associated with each lane change are uncertain because the amount of normal driving spent making lane changes is not known with precision; however, rough estimates in an Ontario Ministry of Transportation report suggest about a threefold relative risk if less than 1% of normal driving involves a lane change.

We wondered whether people can accurately judge if they are in a lane that is slower than the next lane on a congested roadway. Mistaken impressions, for example, might cause a driver to incorrectly think the next lane is faster and motivate a needless lane change. Perhaps errors in judgment produce a systematic bias and create an illusion that the next lane is generally moving faster, even if all lanes have the same average speed. One basis for such error is if drivers expect that they should spend equal amounts of time passing and being overtaken. We have shown that such an expectation is mistaken when time is measured by discrete intervals. We recently popularized this finding in an exceedingly short paper...

Are Those Other Drivers Really Going Faster?

Donald A. Redelmeier and Robert J. Tibshirani
published in Nature. This article describes the work in detail.

Methods

Individual Vehicle Perspective

Most traffic studies describe vehicle flow at a macroscopic level. Doing so makes sense because agencies tend to focus on the mobility of large populations rather than unique individuals. In addition, studying traffic at the level of an individual vehicle is problematic without elaborate video equipment or a helicopter. For our study, however, we wanted to learn about an individual person’s perceptions while driving a single vehicle. To address this topic, we relied on computer simulations for testing diverse and extreme situations. Later in the article we discuss field data we also collected to test our models. Computer simulations were the core of our work because experiments on real drivers seemed to be unsafe, unethical, impractical, or too expensive. The computer simulations tracked each vehicle each second to determine where it was and what it was doing (accelerating, decelerating, or staying at constant velocity). We assumed a vehicle would accelerate if it was traveling slower than its target speed and no other vehicle ahead was within the minimum headway distance. The vehicle would decelerate if another vehicle was ahead and within the minimum headway distance. The vehicle would maintain a constant speed if it achieved target speed and no other vehicle ahead was too close (within the minimum headway distance). Initial simulations used a minimum headway distance guaranteeing that collisions would not occur, whereas supplementary simulations applied less restrictive headways.

The baseline analysis used parameters to yield a plausible simulation yet allow subsequent sensitivity analyses. The target speed was set at 100 km/h (63 mi/h) and identical for all vehicles. The acceleration was set uniform for all vehicles and capable of going from 0 km/h to 100 km/h in 10 seconds. The deceleration was set uniform for all vehicles and capable of going from 100 km/h to 0 km/h in 5 seconds. Such performance is similar to that of a Honda Accord. The minimum headway distance (d) was a function of current velocity (v) and equal to the expression \[d = (v^2/100) + 1 \]. Thus, a vehicle traveling at 100 km/hr required a minimum headway of 101 m, stayed at constant speed if the next vehicle was 110 m ahead, and decelerated if the next vehicle was 90 m ahead.

Aggregate Traffic Characteristics

Other assumptions were used to take into account roadway characteristics and traffic congestion. The most important assumption was that the number of vehicles and amount of available roadway was stable. This implied that the overall spacing of traffic, expressed as the average length of roadway available for the average vehicle, was constant and not negligible. Thus, conditions which provided little total roadway for large numbers of vehicles resulted in substantial congestion. If the average spacing was less than 100 m, then not all vehicles could maintain target speed under baseline conditions. Moreover, an average spacing that was greater than 100 m did not guarantee smooth flow unless all the vehicles were spaced fairly evenly.

A completely realistic simulation of a single lane of traffic was impossible because vehicles can differ in target speed, headway tolerance, acceleration, deceleration, starting position, current velocity, and sequence relative to others. Our model was designed with a few initial sources of randomness, then gradually made more complex. The baseline condition assumed that all vehicles had identical performance characteristics and started at zero velocity. Starting positions were initially generated using a mixture of normal distributions to provide spacing that was nonnegative with low mean and high variance. The mixture of normal distributions specifies that a random variable is drawn according to a specified probability from one of two different normal distributions.

The main advantage of the computer simulations is that they permitted construction of a second lane of traffic relatively effortlessly. Moreover, the second lane could be established with characteristics identical to the index lane, including the number of vehicles and overall spacing. By applying a different starting seed to the random generator, however, the two lanes could follow somewhat different patterns yet obtain the same average speed. Furthermore, computer simulations made it possible to prevent drivers from making lane changes. The essential contribution of a two-lane simulation was that it allowed drivers to not just determine their absolute speed on the roadway but also to determine their relative speed compared to vehicles in the next lane.

Psychological and Statistical Issues

Research in psychology suggests that people in parallel queuing processes tend to judge their speed by assessing their progress relative to those in the other queue. We defined a “passing epoch” when the index driver started behind and ended ahead of one or more drivers in the other lane after a one-second interval. We defined a “being overtaken epoch” when the index driver started ahead and ended behind one or more drivers in the other lane after a one-second interval. Other investigators use the terms “skips” and “slips” to denote these two events. All else equal, drivers prefer passing rather than being overtaken. A key issue was that people are sensitive to these events but relatively insensitive when two events occur simultaneously.

All simulations were programmed using the S-PLUS statistical language. The typical run time was about 5 minutes to create a single simulation of about 10 minutes of highway traffic. For our analyses, we typically ran about 100 simulations for both traffic lanes to obtain stable estimates for the mean number of overtaking epochs and passing epochs during each 10-minute interval for an index vehicle. Typically, this required more than a full day of computer processing time to create simulations and summary statistics. Comparisons were expressed as both the absolute number of overtaking and passing epochs as well as the relative number of overtaking and passing epochs. All comparisons were statistically significant (p<.001), except where noted.

Results

Virtual Vehicles

The speed of individual drivers showed long intervals of slow velocity and short
bursts of high velocity (Fig. 1). The overall pattern was nonconstant and non-periodic with most time spent at slow velocity. As expected, the correlation between a vehicle’s current speed (compared to the road) and current spacing (compared to vehicle in front) was strong and positive (the correlation was .34, with a 95% confidence interval .26 to .42). The mean velocity was about 18 km/h, which is slower than the velocity of about 31 km/h theoretically possible if all vehicles achieved uniform spacing (and also slower than theoretically possible if vehicles tailgated in an unsafe manner). The variation in speed and spacing showed no trend toward abating as the simulation duration increased.

The relative speed of one index driver compared to one other driver in the next lane also followed a complex pattern (Fig. 2). Substantial variation in relative speed and relative position was observed even over a short time interval. The curves did not represent conventional random walks because extreme differences were unlikely and there were frequent crossings of the zero point. In addition, positive serial correlation was found so that the average narrowing epoch (where the separation between the two drivers decreased) was about three times more likely to be followed by another narrowing epoch than by a widening epoch. More complicated descriptive statistics were possible by evaluating two (or more) comparator drivers in the next lane.

Summary Findings

Summary statistics were based on comparing the index driver to all the other drivers traveling in the next lane of traffic. Much of the time nothing happened and relative positions remained unchanged. Typically, during a 10-minute interval about 76 of the 600 one-second epochs (13%) were characterized by an event. Epochs in which the index car was overtaken were more frequent than epochs in which the index car was passing (43 vs. 33, ratio = 130%). Of course, the average number of cars overtaking the index car during the average overtaking epoch was proportionately smaller than the average number of cars passed by the index car during the average passing epoch. Hence, the total number of overtakes equaled the total number of passes over the full interval (each about 46).

These baseline conditions indicated that the next lane might mistakenly appear faster than the driver’s current lane, even though both lanes had identical average speeds. Results from individual simulations varied, but in 70% of cases the imbalance indicated fewer passing epochs than being overtaken epochs. For all simulations, the asymmetry was similar during the first and the second five minutes of simulation. The exact number of vehicles in each lane (varying between 100 or 1,000) made no difference provided that the average traffic density remained unchanged. One of the strongest determinants was the overall degree of congestion, where decreasing congestion...
tended to attenuate the asymmetry (Fig. 3).

Testing Other Factors

A more subtle characteristic of roadway congestion was the initial source of randomness. Our baseline condition assumed that the starting gaps between vehicles followed a mixed normal distribution: 90% of the gaps followed a normal distribution with mean 2 and standard deviation 0.1 and 10% followed a normal distribution with mean 100 and standard deviation 5. This created a bimodal distribution of initial gaps and a skewed distribution of subsequent gaps (Fig. 4). Replacing the mixed normal random generator with a Bernoulli random generator (90% of the gaps are of length 2 and 10% are of length 100) yielded a somewhat greater subsequent apparent difference in speed (54 vs. 36, ratio = 150%). Replacing the mixed normal random generator with a Poisson random number generator having the same mean (11.8) yielded a smaller subsequent apparent difference in speed (81 vs. 70, ratio = 116%).

Altering the vehicle characteristics could accentuate or attenuate the apparent difference in speed. A particularly high target speed had virtually no effect, however, because almost no vehicles attained their target speed under baseline conditions. Vehicles with especially fast acceleration, that could go from 0 km/h to 100 km/h in 5 seconds rather than 10 seconds, generated a larger apparent difference in speed (41 vs. 22, ratio = 186%). Vehicles with especially fast deceleration, that could go from 100 km/h to 0 km/h in 2.5 seconds rather than 5 seconds, generated a smaller apparent difference in speed (68 vs. 58, ratio = 117%). Simulations in which only the index vehicle had special attributes yielded results similar to the baseline findings.

Several characteristics of the driver could change but not reverse the apparent difference in speed. Doubling the minimum headway distance for the index driver reduced the apparent difference in speed (51 vs. 46, ratio = 112%). Cutting the minimum headway distance by half — to model more tailgating — increased the apparent difference in speed (33 vs. 16, ratio = 208%). Allowing the index vehicle to maintain cruise control at the same average speed as the other lane had negligible effect on the apparent difference in speed (48 vs. 37, ratio = 130%). Allowing the index driver to make fewer glances at the next lane so that comparisons occurred every two seconds rather than every one second reduced the apparent difference in speed (16 vs. 14, ratio = 114%).

People’s Beliefs

To contrast against our formal analysis, we surveyed students attending a safety course and asked about their intuitive beliefs concerning driving in heavy traffic (n=110). The majority (74%) believed that if the next lane has the

Figure 2. Speed and position of one vehicle compared to a vehicle in next lane. Top panel shows speed of index vehicle relative to one vehicle in the next lane. Bottom panel shows distance of index vehicle relative to the other vehicle. X axis shows 10 minute time interval as single-second epochs. Y axis shows speed and distance, respectively, at each time epoch. Note, for example, that during the first 30 seconds the index vehicle loses much of its advantage over the other vehicle as shown by a negative relative speed and a declining relative position. In this simulation both vehicles were programmed to accelerate at exactly 10 m/s/s and decelerate at exactly 20 m/s/s.
same average speed as the current lane the amount of time spent passing and being overtaken should be equal. The remainder (26%) were split almost evenly on whether the amount of time passing should exceed or should trail the amount of time spent being overtaken (10% vs. 16%). Many (46%) indicated they would consider changing lanes if the relative difference exceeded 10%. The majority (72%) indicated they would consider changing lanes if the relative difference exceeded 50%.

As another test of validity we also videotaped traffic sequences by mounting a camera in a moving vehicle and recording the side-view perspective of the next lane on a congested roadway during rush hour. A section of videotape was then selected that showed four minutes of continuous traffic with many overtaking and passing events and with an overall speed slightly slower in the next lane. The section of videotape was screened to another group of driving students (n=120) who were asked to judge whether the next lane moved faster or slower than the index lane. The majority stated that the sequence was realistic (86%), that the next lane moved faster (70%), and that they would have made a lane change if safe to do so (65%).

Figure 3. Relation of traffic speed to time spent passing and being overtaken. Figure shows relation of traffic speed to amount of time spent passing and being overtaken. X axis shows the overall average speed of a lane. Y axis shows the total number of single-second epochs in a 10 minute interval in which index driver passes or index driver is overtaken by one or more vehicles in next lane. Note, for example, at an average speed of 15 km/h a driver spends about 46 seconds being overtaken by vehicles in next lane and about 33 seconds passing vehicles in next lane. Lesser congestion leads to higher speeds, fewer passing and overtaking epochs, and a smaller asymmetry.

Discussion

We developed a computer simulation to evaluate the speed of individual vehicles on a congested roadway. We then constructed a second lane of traffic having similar characteristics and assessed the apparent speed of the second lane relative to an index vehicle in the first lane. We found that the second lane could be mistakenly perceived as going faster because a driver generally spent more time being overtaken than passing. No combination of assumptions or parameters reversed this asymmetry. A videotape sequence obtained from field observations confirmed people’s mistaken impressions of speed on a congested roadway. Together, these findings suggest a roadway illusion — namely, that the next lane on a congested roadway appears to be moving faster than the driver’s current lane even if both lanes have the same average speed.

The mistaken impression arises due to several factors. The basic explanation is that vehicles spread out when going quickly and pack together when going slowly (Fig. 5). A driver on a congested roadway can pass many vehicles in a brief interval, whereas it takes much more time for the driver to be overtaken by the same number of vehicles. Therefore, a journey has fewer passing epochs than overtaking epochs. Every driver, therefore, should normally expect to spend more time going slower than going faster compared to others. In contrast to this principle of queuing theory, people do not formally integrate the frequency and intensity of every moment and, instead, expect that the amount of good times should balance the amount of bad times. Of course, people’s mistaken judgments are sometimes fortuitously correct and the next lane turns out to be faster.

Several factors can alter the apparent asymmetry in speed. We found that greater congestion, particularly if distributed unevenly, intensified the illusion. Vehicles with powerful engines or weak brakes also accentuated the illusion. Drivers who tended to tailgate or who made frequent glances at the comparison lane were more prone to the illusion. Together, these observations suggest that the apparent faster speed of the next lane is a function of both the roadway, the vehicle, and the driver. The essential role of congestion also suggests that the illusion may be a new phenomenon given that, for example, from 1985 to 1995 in the United States the number of vehicle miles travelled increased by 32% but the amount of available roadway increased by only 1%.

We studied faulty intuitions related to queuing theory, but other aspects of human reasoning could reinforce the impression that the next lane moves faster than the driver’s current lane. Differential surveillance can occur because drivers direct more attention ahead than behind; consequently, vehicles that are passed (victories) turn invisible whereas vehicles that overtake (defeats) stay conspicuous. Moreover, glances at the next
lane may be more frequent when drivers are relatively idle. Even if attention were omnidirectional and evenly paced, human psychology may make losses appear more salient than the corresponding gains, causing the joy of passing to feel less intense than the frustration of being overtaken. Finally, misconceptions about chance, like those described in the basketball “hot hand” literature, can make even small streaks seem unduly large.

The most important limitation of our analysis is the dearth of empiric data on the speed of individual drivers in congested roadways. This shortfall in background data is not surprising. Police investigations determine peak velocities for purposes of law enforcement. Traumatologists estimate impact velocities.
as an index for the severity of injury. Traffic engineers assess aggregate flow rates in efforts to maximize the mobility of populations. We are aware of no previous studies focusing on our line of investigation. The pioneering nature of our findings, therefore, calls for more research directly measuring the speed of individual drivers over extended intervals under natural circumstances. The data we obtained from simulations are already quite intricate, suggesting that data from field studies could be even more complicated.

An understanding of the highway illusion may encourage drivers to consider a few safety strategies. First and foremost, individuals should recognize the illusion and resist small temptations to change lanes. In addition, drivers might want to focus more on the clock and less on social comparisons when evaluating their progress in heavy traffic. Incidentally, drivers could try directing more attention toward the rear-view mirror and less toward the side-view window to enhance their subjective satisfaction. Finally, people could remember that some human factors leading to aggressive driving are not idiosyncratic pathology but normal psychology. Authorities stress that the secret for safe driving is to never be in a rush. Our findings suggest that naive attempts to rush may be misguided without a careful understanding of queuing theory.

Aftermath

After publishing our study in *Nature*, we were interviewed by many journalists and encountered five common questions. Some have wondered whether it is ever worthwhile to change lanes while driving. Clearly, a driver must occasionally avoid a fixed obstacle, prepare for an exit, avoid a forced exit, or escape from behind a truck. On occasions when the roads are congested, as well, there may be times when the next lane is moving faster and the driver can gain by making a lane change. Our main finding, however, suggests that the gains from discretionary lane changes are smaller than usually believed and moreover, that discretionary judgments are fallible when estimating speeds on congested roadways. A more conservative attitude, we hope, might encourage drivers to be selective about discretionary lane changes.

A few skeptics have questioned whether a research study can change people's actions and lead to safer driving. We recognize that knowledge does not always control behavior, yet have some reason for optimism. For example, in the United States seatbelts were initially received with great reluctance (17% adherence in 1982) but subsequently followed with growing popularity (69% adherence in 1988). Because inappropriate lane changes cause approximately 300,000 collisions each year in the United States (National Highway Traffic Safety Administration 1995; Ontario Ministry of Transportation 1998), a small improvement in behavior could still yield substantial benefits. In addition, a decreased frequency of lane changes might offer indirect benefits by creating an environment of greater lane discipline and less incentive for otherwise cautious drivers to tailgate as a way of preempting a lane incursion by others.

Some people have correctly noted that passing and being overtaken are really instantaneous events that are equal for both vehicles. We agree with this strict definition but emphasize that people tend to consider the events in more extended intervals. Some journeys seem to entail a lot of time spent passing or being overtaken, contrary to the theory that each event is instantaneous. The roadway illusion occurs if people do not follow strict definitions and tend to view experiences as time intervals, such as single-second epochs. Indeed, some people go further and err by driving as if it were a competitive sport (evaluating progress relative to others) rather than as a logical problem-solving exercise (evaluating progress by arrival time). Hence, the misperception stems from human psychology and not from logical theory.

Some journalists have wondered whether our findings might apply to slow speed queues such as those found in grocery stores and banks. Our research focused on high-speed travel because of the serious consequences of a motor-vehicle collision. For indoor settings, beliefs about being in the wrong lane may primarily stem from biases of multiple comparisons and ignoring other lanes that are moving slower than you.

One more paradox is that consumers are happy to spend an hour navigating around the grocery store gathering items but become upset by having to wait five minutes for checkout. A better perspective might be to evaluate the total time spent door-to-door and place no special emphasis on the final few minutes. Apparently, people's feelings do not always match the reality of a situation.

We have also been quizzed on whether our results are likely to apply to congested roadways outside of Canada. We only obtained videotapes from the Trans-Canada highway, and we do not know the extent of roadway congestion elsewhere. The illusion would not apply to roadways that maintain organized laminar flow, where faster cars are streamlined to more central lanes. Instead, the illusion occurs on congested roadways because flow is disorganized, the laminar structure disintegrates, and drivers become impatient. Our main observation relates to people's misunderstandings of the laws of probability, and the laws of probability are enforced in all countries. Whenever the roads are congested, the best way to arrive five minutes sooner is to start five minutes earlier.

References and Further Reading

