Configurations of embedded spheres

Daniel Ruberman

University of Wisconsin, Madison

November 13, 2015
Introduction

Joint project with Laura Starkston.

Classical geometry studies *Real line configurations*

![Pappus configuration](image)

Pappus configuration (illustrating Pappus’ theorem)

Important features:

- Lines are linearly embedded \mathbb{RP}^1s in \mathbb{RP}^2; every pair meets once.
- Incidence of points and lines encoded in incidence matrix;
- Combinatorial data: specify some points of intersection (red dots in figure); there may well be more.
Typical mixed combinatorial/geometry questions: Specify number of lines and points of given multiplicity.

Combinatorics: Find all combinatorial configurations

Geometry: Find corresponding line configurations or prove non-realization.

Classically, each object in a configuration could be a

- *Real* line: copy of \mathbb{RP}^1, linearly embedded;
- *Complex* line: linearly embedded \mathbb{CP}^1 in \mathbb{CP}^2;
- *Real* pseudoline: copy of \mathbb{RP}^1, topologically embedded;

Our setting:

- *Complex* pseudoline: $S^2 \subset \mathbb{CP}^2$, homologous to \mathbb{CP}^1, that is
 - *topologically embedded* (locally flat)
 - *smoothly embedded*
 - *symplectically embedded.*
Relating the different notions

Arrow means configuration in one category gives configuration in another.

- \(\mathbb{R} \)-line
- \(\mathbb{C} \)-line
- \(\mathbb{R} \)-pseudoline
- \(\mathbb{C} \)-pseudolines:
 - symplectic
 - smooth
 - topological
- Combinatorial configuration
Real pseudolines

Some combinatorial configurations that aren’t geometrically realized (by straight lines) can be topologically realized (by pseudolines). An (in)famous example:

Kantor’s (1881) pseudoline configuration
Real pseudolines

A closer look—one of those lines isn’t quite straight!

But it’s still an embedded \mathbb{RP}^1, that is, a pseudoline.
Complex lines

Real line arrangements give complex ones by complexification: take complex solutions in \mathbb{CP}^2 to linear equations with real coefficients. The incidence relations are the same. This argument doesn’t work for pseudolines, but we can still complexify topologically.

Theorem 1: (R-Starkston 2015) Let \mathcal{L} be a configuration of \mathbb{R}-pseudolines in \mathbb{RP}^2. Then there is a configuration \mathcal{L}_C of \mathbb{C}-pseudolines in \mathbb{CP}^2 such that $\mathcal{L}_C \cap \mathbb{RP}^2 = \mathcal{L}$. Moreover, \mathcal{L}_C is invariant under complex conjugation and has the same combinatorics as \mathcal{L}.

![Diagram of complexification process](image)
Non-realizable configurations

Some combinatorial configurations are not even realized by real pseudolines. Two classic examples:

Fano Plane \((7_3)\)
Möbius-Kantor configuration \((8_3)\)

The Fano plane is (combinatorially) the finite projective plane \(P(\mathbb{F}_2, 2)\).
Non-realizable configurations

The Möbius-Kantor configuration is realized by a configuration of complex lines (F. Levi, 1929). The Fano plane is not!

Our starting point was the following, motivated by constructions in contact and symplectic topology.

Question: (L. Starkston) *Is the Fano configuration realized by symplectically embedded 2-spheres in \mathbb{CP}^2?*

Theorem 2: (R-Starkston 2015) *For any prime p, the combinatorial configuration given by the finite projective plane $P(\mathbb{F}_{p^n}, 2)$ is not realized by a configuration of topological \mathbb{C}-pseudolines.*

This implies non-realization results in all of the other categories.
Theorem 2 has a basic topological mechanism. Let \(\mathcal{F} = \{F_1, \ldots, F_k\} \) be disjoint spheres in a simply-connected 4-manifold \(X \), such that \(F_i \cdot F_i = r \) with \(r \neq 0 \). Then \(\{F_1, \ldots, F_k\} \) are linearly independent in \(H_2(X; \mathbb{Z}) \).

But for a prime \(p \) dividing \(r \), there may be a \(\text{mod } p \) relation

\[
\sum_i a_i[F_i] = 0 \quad \text{in } H_2(X; \mathbb{Z}_p) \quad \text{with } a_i \in \mathbb{Z}_p. \tag{1}
\]

Each such relation corresponds to a \(p \)-fold branched covering \(\tilde{X} \to X \) with branch set a subset of \(\mathcal{F} \).

We prove Theorem 2 and related results by studying the topology of \(\tilde{X} \).
Want to show that a given combinatorial configuration is not realized.

Here’s how it works:

- Start with combinatorial configuration C given by an incidence matrix.
- Assume it’s realized by a \mathbb{C}-pseudoline configuration $S = \{S_1, \ldots, S_k\}$ in $\mathbb{C}P^2$.
- Blow up $\mathbb{C}P^2$ at all n intersection points to get $X = \mathbb{C}P^2 \# n\overline{\mathbb{C}P^2}$.
- Let $\tilde{S} = \{\tilde{S}_1, \ldots, \tilde{S}_k\}$ be the proper transforms of the S_i.
- Read off relations like (1) from incidence matrix.
- Compute topological invariants of \tilde{X} to get a contradiction.

More refined versions (using Heegaard Floer invariants) potentially show difference between realizing by *smooth* or *topological* \mathbb{C}-pseudolines.
How do the combinatorics come in?

- Mod p relations amongst the surfaces \tilde{S}_i form a subspace V_C of the vector space \mathbb{F}_p^k: a p-ary linear code.
- Natural partial order on the vectors in V_C given by $\mathbf{x} \leq \mathbf{y}$ if \mathbf{x} obtained by replacing some entries of \mathbf{y} by 0’s.
- A vector $\mathbf{y} \in V_C$ is **minimal** if no nonzero \mathbf{x} in V_C with $\mathbf{x} \leq \mathbf{y}$.
- Vectors in \mathbb{F}_p^n have a **weight**: the number of non-zero entries.
- Minimal weight vectors in V_C are minimal.

Geometrically, a relation corresponding to a branched cover with branch set $\mathcal{A} \subset \tilde{S}$ is minimal if there’s no branched covering with branch set a proper subset of \mathcal{A}.
An example—the Fano plane

For the Fano plane, we take $p = 2$.

The subgraph pictured below corresponds to the relation

$$\tilde{S}_2 + \tilde{S}_3 + \tilde{S}_5 + \tilde{S}_6 \equiv 0 \pmod{2}. $$

The minimal weight for this code is 4, so this is in fact minimal.
Weights and the branched cover

How does this help?

Proposition 3: Suppose that X is simply-connected, and that $\tilde{X} \to X$ is a p-fold cyclic branched cover with branch set $\mathcal{F} = \{F_1, \ldots, F_k\}$. If the corresponding vector is minimal, then $H_1(\tilde{X}; \mathbb{C}) = 0$.

From Proposition 3 and traditional methods (Euler characteristic, G-signature theorem), we can determine

- $H_2(\tilde{X}; \mathbb{C})$, along with the action of \mathbb{Z}_p.
- The (equivariant) intersection form on \tilde{X}.

Summary: Combinatorial information leads to information about the topology of \tilde{X}.
For the Fano plane, we are looking at $X = \mathbb{CP}^2$ blown up at 7 points. For the branched cover corresponding to the weight 4 relation, we find that

- $b_2(\tilde{X}) = 10$
- The signature of \tilde{X} is -8.
- From the geometry, we can construct 10 disjoint spheres in \tilde{X}, each with negative self-intersection.

This is a contradiction, so the Fano configuration is not realized, even by locally flat 2-spheres.
Finding the spheres

Separate spheres by blowing up at the points Q_i.

Daniel Ruberman
Finding the spheres: proper transforms of the S_i in X
Finding 10 spheres in the double cover $\tilde{\mathcal{X}}$

\[S_1'' \cdot S_1 = S_4' \cdot S_4 = S_7' \cdot S_7 = -2 \]

\[S_1' \cdot S_1' = S_4' \cdot S_4' = S_7' \cdot S_7' = -2 \]

\[S_2' \cdot S_2' = S_3' \cdot S_3' = S_5' \cdot S_5' = S_6' \cdot S_6' = -1 \]
Sketch of complexification Theorem 1

Represent \mathbb{R}-pseudoline configuration by a ‘wiring diagram’, then do this...
Sketch of complexification Theorem 1

... and plug it into this