D. Do Carmo 57/3, 8
Do Carmo 77/1,3,5,7

E. Let M be a connected Riemannian manifold, and let f,g be isometries of M with itself. Show that if there is a point \(p \in M \) with \(f(p) = g(p) \) and \(df_p = dg_p \), then \(f = g \) everywhere on the manifold. [Suggestion: By composing \(f \) with \(g^{-1} \), it suffices to show this statement in the case that \(g = id \). Now try to show that \(U = \{ q \in M \mid f(q) = q \} \) is open and closed. Closedness is easy; for openness, use the exponential map and uniqueness of geodesics.]