1. Let E_1 and E_2 be vector bundles with connections ∇^1, ∇^2.
 (a) Show that there is a natural connection $\nabla^1 \oplus \nabla^2$ on the Whitney sum $E_1 \oplus E_2$.
 (b) Describe the curvature of this connection.

2. Roe, question 2.29 (p. 37).

3. (a) Roe, question 2.31 (p. 37).
 (b) Work this out for the special case of $SO(3)/SO(2) = S^2$. Remember that since the group G acts transitively on G/H, you only have to find the curvature at one point.

4. (a) Roe, question 2.36, (i)–(iv) (p. 39).
 (b) Show that if the oriented bundle V splits as a Whitney sum $V = W \oplus \mathbb{R}$, then (for an appropriately chosen connection, cf. problem 2), $Pf(K) = 0$. Conclude that if V has a nowhere vanishing section, then its Euler class is 0.
 (c) Using the result of problem 3, compute the Euler class of the oriented bundle $SO(3) \times_{SO(2)} \mathbb{R}^2 \to S^2$. What bundle is this?

5. Show that a principal G-bundle $\pi : P \to X$ is trivial (isomorphic to $\pi_1 : X \times G \to X$) if and only if it has a section. (Contrast with vector bundles, which have lots of sections.)

6. Find all the places in your notes where I said ‘this is an exercise’ and do the exercise.