Solutions to final review problems

Solutions to problems from the book

Chapter 11.

True—False. 2. False. 4. False (true in quadrants 1 and 4, false in quadrants 2 and 3). 6. True.
8. True. 10. True (sorry; we didn’t do this stuff.)
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Problem 16. r = 2.

Problem 20. % = Zi%i = 32;%6. So when ¢t = —1, the slope is 4/9.

Problem 24. % = dw/dl _ 1312 _ 1 _ 3t.

de — dx/dt 2t 2t
d _
Py GG _—3t?—-5 3241
dz?  dz/dt 2t 4¢3

Problem 38. L = [/ \/sm () +sin? () cos2(4) do = [ sin*(%) db = [3(0 — %sin(%—e))]g =

s 3
7 ~§V3

Problems Plus

Problem 1. By the fundamental theorem of calculus, dz/dt = cos(t)/t and dy/dt = sin(t)/t.
The tangent is vertical when dz/dt = 0, which first happens at ¢ = w/2. The length of the curve is

a2
/ cos*t t sm t g — / Lt =in(r/2)

Problem 5. (a) If you replace the parameter value ¢ by 1/t, then the values of x and y are
interchanged. So if (a,b) = (x(t),y(t)), then (b,a) = (z(1/t),y(1/t)) is also on the curve. This
doesn’t work for ¢t = 0, but ¢ = 0 gives the point (0,0) on the curve. (The symmetry is also easy to
see if you do part (e).

(b) dy/dt = 61t+t%t)2 is 0 when t = 0 or t = v/2, so those values of ¢ give horizontal tangents at (0,0)
and (V/4, v/2). From the symmetry of the curve (part (a)) we have vertical tangents at (0,0) and
(V2, V4).
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(e) 3 + 9® and 3xy both come out to HJQF%)Q
(f) Use the equation from part (e) and substitute to get r3cos®# 4 r3sin® 6 = 3r2cosfsinf, or
r= 3cosfsing __ 3secftand
cos3 f+sin> 0 1+tan36 °

g) The loop in question corresponds to 6 € (0,7/2), so the area is

/2 1 [7/? 2 2 oo .2
/ r2/2d9:/ 3sec Qtin 0d9:9/ u’ du _3
0 2 0 (1 + tan 9)2 2 0 (1 + 'LL3)2 2

using the substitution u = tan 6.
Chapter 13.

True—False. 2 False. 4 True. 6 True. 8 False; for example i x (i x j) # (i x i) x j. 10 True. 12
False. 14 False.

Problem 2.

2a+b

Problem 4. (a) 11i —4j — k. (b) v14. ( ) —1. (d) —3i—7j — 5k. (e) 4v/35. (f) 18. (g) 0. (h)
33i — 21j + 6k. (i) —1/v6. (j) —%(1+ 2k). (k) cosf = 2\ﬁ so 0 ~ 96°.

Problem 10. AB = (1,3,-1), AC = (=2,1,3) and AD = (—1,3,1). The volume is the (absolute

value of) AB - (AC x AD) = | — 6]

Problem 24. (a) The normal vectors are not parallel (by direct examination), so the planes
are not parallel. They are not perpendicular (their dot product is —5) so the planes are not
perpendicular. (b) The angle between the planes is the angle between the normal vectors, or

cos_l(\;si) ~ 122°. Actually, we usually use the angle less than 90°, so we should say 58°.

6.

Problem 34. Complete the square to get © = (y — 1)? + (2 — 2)2, which is a circular paraboloid
opening up in the positive x direction.



Problem 46. Cylindrical: 72 + 22 = 2r cos . Spherical : p? = 2psin¢cosf or p = 2sin ¢ cos b

Problems Plus

Problem 2. First do it in 2 dimensions. We have K
a rectangle of size L x W, two rectangles of size L x 1, two L
of size 1 x W, plus four quarter circles of radius 1. In three w

dimensions, the central part is a rectangular solid of dimen-

sions L x W x H. In addition we have rectangular solids on

the sides of dimensions Lx W x 1, Lx1x H, and 1 x W x H.
The corners are made of four quarter cylinders of radius 1 and height H, four of height L, and
four of height W. Finally, the corners get 8 eighths of a sphere of radius 1. All this adds up to
LWH +2LW +2WH + 2LH + 71*W + 712L + 71°H + 3713 = LWH + 2(LW + WH + LH) +
m(L+W + H) + 3.

Problem 4. (a) Let v, = 180j be the velocity shown by the compass, let w be the velocity
of the wind, and let vy = v, + w be the actual velocity relative to the ground. Since the plane
flew 80km in a half-hour, |v4| = 160. So v, = (160 cos85°)i + (160sin85°)j ~ 13.9i + 159.4j. So
W = vy — Vv, ~ 13.91 — 20.6j.

(b) The pilot should correct course by traveling with velocity v. — w ~ —13.9i + 200.6j.
Chapter 14.

True—False. 2 True. 4 True. 6 False.

Problem 4. The point corresponds to parameter value t = 1. The velocity vector is (2,4, 3), so
the equation of the line is x(t) = (1 + 2¢,1 + 4¢,1 4 3t).

Problem 6. (a) We want y = 0, ie ¢t = 1/2, so the point is (15/8,0,—1n2). (b) The tangent
vector is /(1) = (—=3,2,1). So the tangent line (in vector form) is x(t) = (1 — 3¢, 1 + 2t,¢).

Problems Plus

Problem 1. (a, b) v(t) =1/(t) = Rwcoswti — Rwsinwtj and direct computation shows r-r’ =0

and |v| = Rw. The time of revolution is the circumference of the circle divided by the speed, ie
T — 21R _ 2x

vl T W
(c) a(t) = —Rw?sinwti — Rw? coswtj = —w?r(t) which clearly points inward.

2
(d) Use Newton’s law F = ma; then |F| = m|a| = mRw? = %ﬁ“ﬁ = m'TX'.
Problem 3. (a) Taking the given formulas for granted, the maximum height is achieved when
the j-component of the velocity is 0. This occurs when vy sina = gt, ie at t = W. The height
2 2

at this time is given by y = 2 5212 2. As a function of a, this is maximized when o = 7/2, so that

2
the maximum height is g—g.



Problem 5(a). Divide by m, and take the integral of both sides to give

d’R k [ dR
Tt = | Zdt=—g [ jdt+C
/dt2 +m/dt g/‘] te =

dR k
—+ —R=—¢gtj+C
dt ~ m
Plugging at t = 0 gives C = v(0). (The problem assumes that R(0) = 0.)

Chapter 15.
True—False. 2 False (Clairaut). 4 True. 6 False. 8 False. 10 True. 12 False (see exercise 15.7.35).

Problem 6. Parabolas opening down.

Problem 12. We estimate T,(6,4) by averaging the rates of change for Ax = 42, which are
w =3 and w = 4 respectively, so T;(6,4) ~ 3.5. Similarly, T,(6,4) ~ —3. So a
linear approximation is L(z,y) = 80 + 3.5(x — 6) — 3(y — 4). This gives an approximation (to the
actual value of T'(5,3.8)) of L(5,3.8) =80 — 3.5 — 3(—0.2) = 77.1°C.

Problem 14. u, = —e "sin26. uy = 2e~" cos 26.

Problem 20. z,, =0, 2y, = dze~% and Zpy = Zyz = —2e" %,

Problem 26. z, =1 and z, = 0, so an equation of the tangent plane is z — 1 = z.

(b) A normal vector to the tangent plane is (1,0, —1), so parametric equations for the normal line
arex=t, y=0, z=1—1.

Problem 34. (a) dA = %dx + %dy = fydx + fady.Since |Az| < .002m and |Ay| < .002m
(mind your units!) the maximum error would be about 6(.002) + 3(.002) = .017m?.

(b) For the hypotenuse, h, we have dh = \/:;Tdem + \/I;/Tdey. So the maximum error is about

dh = 5(.002) + 32 (.002) ~ .0026m.

Problem 40. A = 1sinf, so by the chain rule, % =1 |(ysing)% + (zsin 9)% + (zy cos 9)% .
For the given values, this works out to ~ 60.8in?/s.

Problem 50. From problem N, we want the normal to both surfaces. One is given by N = V(z —
222 4+ y?) = (8,4,1) and the other by n = (0,0, 1). So a tangent vector is given by N x n = 4i — 8j.
(You can figure this out without problem N, by saying that the tangent vector is perpendicular to
the normal vector to the curve 222 4+ y? = 4 in the plane z = 4.) Hence parametric equations are
given by x = —2+44t, y =2 —8t, z = 4.

Problem 52. fo = 32% — 6y, f, = —6x + 24y>. Solving f, = 0 gives y = %ZL’Q, and then
substituting into f, = 0 gives 6z(z® — 1) = 0. The critical points are then (0,0) and (1,3). The
second derivative test shows the first is a saddle, and the second is a local minimum.

Problem 54. f, = 2ze¥/? f, = e¥/2(2 4+ 2% +y)/2. So the only critical point is (0, —2), which is
a local minimum by the second derivative test.

Problems Plus



Problem 4. Let’s show something less than was asked for, namely that the function is not
continuous if r < 2. To do this, we need to show that the limit as (x,y,z) — (0,0,0) either does
not exist, or is not 0 if it does exist. Consider the function along the line (z,0,0), ie g(z) = ’;—; If
r = 2, this has limit 1, but that is not the value of the function at (0,0,0), so the function is not
continuous. If r < 2, then the limit certainly doesn’t exist, so again the function is not continuous.

(It turns out to be continuous if r > 2, but that takes considerable work to prove.)

Problem 7. There’s nothing else to do but plug in the expressions for x, y, and z in cylindrical
(part a) or spherical (b) coordinates and grind away with the chain rule. T’ll check your work if

you like.
Chapter 16.

True—False. 2 False. If you change the order of integration, the limits will be fol fyl 4. True (use

the fact that e¥” siny is an odd function). 6. True: The integrand is < 3, and the area of the base
is 3. (We didn’t actually discuss this in class, but it should make intuitive sense.)

Problem 4. fol fol ye Vdxdy = fol(ey —1)dy =e—2.
Problem 14. The region is to the right of the curve x = \/y with 0 <y < 1. This can also

be described as 0 < z < 1, and below the curve y = 22. So the integral is fo & ye dy dx =
1
fol %wexzdx =1 [exz}o =1le-1).

Problem 20. A picture would help.

[Loww= [of-)a-
[

=2 X=y

Problem 22. Use polar coordinates: W/Q fl (rcos@)rdrdd = 7(23/2 —1).

Problem 32. =z ranges from 0 to 3 —y =7 — rsinf. So the volume is
27 2 p2—rsinf 27 2
/ / / rdzdrdf = / / (3r — r?sin 0)drdf = 12r.
o Jo Jo o Jo

Problem 2. Divide the rectangle into two pieces, R; and Rs, according to whether x or y is larger.

Problems Plus



(This is the same as whether 22 or 32 is larger.) The integral splits accordingly, with the function
being e on Ry and ¥’ on R, . The integral over Ry is fol NG * dydz, while the integral over Ry
is fol I ¥’ dzdy. The first one gives fol ze® dr = (e — 1); the second gives fo yeV’ dy = Fe—1)
so the total is (e — 1).

R,

Ry

Chapter 17.
Problem 2. Use the parameterization = = t, y = ¢ for t € [0,1]. We get ds = v/1 + 4t2dt so the

integral becomes
/ tv/1 + 4t2dt = [ 1+ 4752)3/2}0 12(53/2 ~1)
0

Problem 4. Set x =t and y = sint. Then (use integration by parts for [tsint dt)

/2 1 3
/xy da:+ydy:/ tsint dt—I—sintcostdt:[—tcost—l—sint+isin2(t)]g/2:
(& 0

1 1
4 3
Problem 6. / Ty de+e¥ dy+xz dz = / V6 413 dt+e” 2t dt+t7 312 dt = [7167 e’ + 1Ot10] =
0
3

de1y
143
7 10°

Problem 8. First compute r/(t) = costi + j Then (again with integrating by parts)

+ t)sinti + sin“ tj) - (costi + j) 1+ sm COS + sin?

1+ t)sinti + sin? ¢ ti t)sintcost dt tdt =

C
1/W(1+t) 2t: dt + (1 2t) dt = 1 L1 4 t)cos 2t + 2 sin2t + ¢ — ~sin2t T
- sin — COS - |—= COS — sin — —sin = —.
2 Jo 2| 2 4 2 o 4

Problem 10. The problem asks for the line integral fo F - dr for two paths C' = C or Cy. Let

Cy be the straight line, where ri(t) = (1 —¢)(3,0,0) + t(0,7/2,3) and let Cy be the spiral where

ra(t) is given in the book. For the first integral, z = 3(1 —¢), y = /2t and z = 3¢, so the integral
9, 3w, 3m,y 37

Fdey — | (30)(—3)dt+(3—30)(x/2)dit (/20 (3)dt — | - t t t21— ) 37
J R N L T

For the second integral, use the given parameterization (and note that ¢ € [0,7/2]):

/2 9 9 /2 3
/ (—9sin®t + 3cost + 3tcost)dt = [2+4sin2t+3sint+3(tsintsint)] =—
0 0



Additional Problems. 1 M

Problem J. The first thing is to get a picture of the graph . \ N 15(

of the polar curve r2 = 9cos 5. This one is similar to the
graph of r = cos 260, done in section 11.3; the result is pictured 2
at right. The area is 5 times the area of one loop, which is /41 \
described by —110 <f< 1%' Thus the area is { e 1

=

6 cos'/2(56) 45 o 9 s
45/ / rdrdf = 2/ cos(50)df = 5 [sin(50)]*°x =09.
5 o -

(The answer in the book is 18; I don’t see where the factor of 2 went.)

i —

For problem 34, we need a picture of the graphs of the polar curves // \\
r =2+ cos20 and r = 2 + sin 6. They are pictured together 2]
at right; the first one is the peanut shaped region, and the *\\r T
second is the more circular region. The area is twice the area / “\ \
of the crescent-shaped region at lower right, which ranges L ; , yA—

; Bk £1 1 23

from 6§ = —7/2 to the 6 that we get from solving 2+ cos 26 = \ §\ - // /
2 +sin@. This is given by sin = , i.e., by 6 = %. So =

/6 2+cos 20
A= 2/ / rdrdf
—7/2 J2+sin6

which is really too messy to work out.

Problem K. I claim that f must be a constant. This seems pretty obvious, but requires a bit
of proof. First, note that f, = 0, so by 1-variable calculus, f(x,y,z) is constant in z, ie can be
written as a function g(y, z). Now g, = f, = 0, so by the same argument g is constant in y, ie can
be written as a function h(z). Finally, h, = f, = 0, so again h is a constant. It follows that f is
this same constant.

Problem L. The hypothesis is just a way of writing that g = f, and h = f,. Now gy = foy = fyz
(by Clairaut’s theorem) which is in turn just h,. Thus g, = h, as required.

Problem M. This is just a particularly succinct form of the chain rule. The less succinct version
is g'(t) = 952/ (t) + SEy/(6) + SE2/(t) = (VF) - ¥'(1).

Problem N. We showed earlier in the course that the tangent vector to a curve in a level surface
is orthogonal to the normal vector to that surface. (This followed from the chain rule: write the
curve as r(t) = (z(t),y(t), 2(t)), and take % of both sides of the equation F'(z(t),y(t),2(t)) = 0.
By the chain rule, the left-hand side is VF - r/(¢). But VF is the normal vector to the surface, and
r’ is the tangent vector to the curve.) Since the curve lies in both surfaces, it is orthogonal to VF



and also to VG, ie orthogonal to both normals.

Problem O. Following the hint, let’s look at the product rule(s):

%(u(t) V() = 0t () +ult) V), L(ult) x v(D) = w(t) x v(t) +ult) x V().

v/(t) dt = [ L(u(t)-v(t)) dt — [u'(t) - v(t) dt, and using the
%(u(t) -v(t)) dt = u(t) - v(t). The same argument works for

From the first one, we have [u(t) -
fundamental theorem of calculus, [
the cross product product rule.



