
Solutions to final review problems

Solutions to problems from the book

Chapter 11.

True–False. 2. False. 4. False (true in quadrants 1 and 4, false in quadrants 2 and 3). 6. True.
8. True. 10. True (sorry; we didn’t do this stuff.)

Problem 10 Problem 14
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Problem 16. r = 2.

Problem 20. dy
dx = dy/dt

dx/dt = 2−2t
3t2+6

. So when t = −1, the slope is 4/9.

Problem 24. dy
dx = dy/dt

dx/dt = 1−3t2

2t = 1
2t −

3
2 t.

d2y

dx2
=

d
dt(

dy
dx)

dx/dt
=
−1

2 t−2 − 3
2

2t
= −3t2 + 1

4t3

Problem 38. L =
∫ π
0

√
sin6( θ

3) + sin4( θ
3) cos2( θ

3) dθ =
∫ π
0 sin2( θ

3) dθ =
[

1
2(θ − 3

2 sin(2θ
3 ))

]π

0
=

π
2 −

3
8

√
3.

Problems Plus

Problem 1. By the fundamental theorem of calculus, dx/dt = cos(t)/t and dy/dt = sin(t)/t.
The tangent is vertical when dx/dt = 0, which first happens at t = π/2. The length of the curve is

L =
∫ π/2

1

√
cos2 t

t2
+

sin2 t

t2
dt =

∫ π/2

1

1
t

dt = ln(π/2)

Problem 5. (a) If you replace the parameter value t by 1/t, then the values of x and y are
interchanged. So if (a, b) = (x(t), y(t)), then (b, a) = (x(1/t), y(1/t)) is also on the curve. This
doesn’t work for t = 0, but t = 0 gives the point (0, 0) on the curve. (The symmetry is also easy to
see if you do part (e).
(b) dy/dt = 6t−3t4

(1+t3)2
is 0 when t = 0 or t = 3

√
2, so those values of t give horizontal tangents at (0, 0)

and ( 3
√

4, 3
√

2). From the symmetry of the curve (part (a)) we have vertical tangents at (0, 0) and
( 3
√

2, 3
√

4).
(d)
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(e) x3 + y3 and 3xy both come out to 2t3

(1+t3)2
.

(f) Use the equation from part (e) and substitute to get r3 cos3 θ + r3 sin3 θ = 3r2 cos θ sin θ, or
r = 3 cos θ sin θ

cos3 θ+sin3 θ
= 3 sec θ tan θ

1+tan3 θ
.

(g) The loop in question corresponds to θ ∈ (0, π/2), so the area is∫ π/2

0
r2/2 dθ =

1
2

∫ π/2

0

3 sec2 θ tan2 θ

(1 + tan3 θ)2
dθ =

9
2

∫ ∞

0

u2 du

(1 + u3)2
=

3
2

using the substitution u = tan θ.
Chapter 13.

True–False. 2 False. 4 True. 6 True. 8 False; for example i × (i × j) 6= (i × i) × j. 10 True. 12
False. 14 False.

Problem 2.

a
b

a + b

-a/2
a - b

2a + b

Problem 4. (a) 11i− 4j− k. (b)
√

14. (c) −1. (d) −3i− 7j− 5k. (e) 4
√

35. (f) 18. (g) 0. (h)
33i− 21j + 6k. (i) −1/

√
6. (j) −1

6(i + j− 2k). (k) cos θ = −1
2
√

21
so θ ≈ 96◦.

Problem 10. ~AB = 〈1, 3,−1〉, ~AC = 〈−2, 1, 3〉 and ~AD = 〈−1, 3, 1〉. The volume is the (absolute
value of) ~AB · ( ~AC × ~AD) = | − 6| = 6.

Problem 24. (a) The normal vectors are not parallel (by direct examination), so the planes
are not parallel. They are not perpendicular (their dot product is −5) so the planes are not
perpendicular. (b) The angle between the planes is the angle between the normal vectors, or
cos−1( −5√

87
) ≈ 122◦. Actually, we usually use the angle less than 90◦, so we should say 58◦.

Problem 34. Complete the square to get x = (y − 1)2 + (z − 2)2, which is a circular paraboloid
opening up in the positive x direction.
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Problem 46. Cylindrical: r2 + z2 = 2r cos θ. Spherical : ρ2 = 2ρ sinφ cos θ or ρ = 2 sin φ cos θ

Problems Plus

Problem 2. First do it in 2 dimensions. We have
a rectangle of size L ×W , two rectangles of size L × 1, two
of size 1 ×W , plus four quarter circles of radius 1. In three
dimensions, the central part is a rectangular solid of dimen-
sions L×W ×H. In addition we have rectangular solids on
the sides of dimensions L×W ×1, L×1×H, and 1×W ×H.

L

W

The corners are made of four quarter cylinders of radius 1 and height H, four of height L, and
four of height W . Finally, the corners get 8 eighths of a sphere of radius 1. All this adds up to
LWH + 2LW + 2WH + 2LH + π12W + π12L + π12H + 4

3π13 = LWH + 2(LW + WH + LH) +
π(L + W + H) + 4

3π.

Problem 4. (a) Let vc = 180j be the velocity shown by the compass, let w be the velocity
of the wind, and let vg = vc + w be the actual velocity relative to the ground. Since the plane
flew 80km in a half-hour, |vg| = 160. So vg = (160 cos 85◦)i + (160 sin 85◦)j ≈ 13.9i + 159.4j. So
w = vg − vc ≈ 13.9i− 20.6j.
(b) The pilot should correct course by traveling with velocity vc −w ≈ −13.9i + 200.6j.
Chapter 14.

True–False. 2 True. 4 True. 6 False.

Problem 4. The point corresponds to parameter value t = 1. The velocity vector is 〈2, 4, 3〉, so
the equation of the line is x(t) = (1 + 2t, 1 + 4t, 1 + 3t).

Problem 6. (a) We want y = 0, ie t = 1/2, so the point is (15/8, 0,− ln 2). (b) The tangent
vector is r′(1) = 〈−3, 2, 1〉. So the tangent line (in vector form) is x(t) = (1− 3t, 1 + 2t, t).

Problems Plus

Problem 1. (a, b) v(t) = r′(t) = Rω cos ωti−Rω sinωtj and direct computation shows r · r′ = 0
and |v| = Rω. The time of revolution is the circumference of the circle divided by the speed, ie
T = 2πR

|v| = 2π
ω .

(c) a(t) = −Rω2 sinωti−Rω2 cos ωtj = −ω2r(t) which clearly points inward.
(d) Use Newton’s law F = ma; then |F| = m|a| = mRω2 = mR2ω2

R = m|v|2
R .

Problem 3. (a) Taking the given formulas for granted, the maximum height is achieved when
the j-component of the velocity is 0. This occurs when v0 sinα = gt, ie at t = v0 sin α

g . The height

at this time is given by y = v2
0 sin2 α

2g . As a function of α, this is maximized when α = π/2, so that

the maximum height is v2
0

2g .
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Problem 5(a). Divide by m, and take the integral of both sides to give∫
d2R
dt2

dt +
k

m

∫
dR
dt

dt = −g

∫
j dt + C ⇒

dR
dt

+
k

m
R = −gtj + C

Plugging at t = 0 gives C = v(0). (The problem assumes that R(0) = ~0.)
Chapter 15.

True–False. 2 False (Clairaut). 4 True. 6 False. 8 False. 10 True. 12 False (see exercise 15.7.35).

Problem 6. Parabolas opening down.

Problem 12. We estimate Tx(6, 4) by averaging the rates of change for ∆x = ±2, which are
T (8,4)−T (6,4)

2 = 3 and T (4,4)−T (6,4)
−2 = 4 respectively, so Tx(6, 4) ≈ 3.5. Similarly, Ty(6, 4) ≈ −3. So a

linear approximation is L(x, y) = 80 + 3.5(x− 6)− 3(y − 4). This gives an approximation (to the
actual value of T (5, 3.8)) of L(5, 3.8) = 80− 3.5− 3(−0.2) = 77.1◦C.

Problem 14. ur = −e−r sin 2θ. uθ = 2e−r cos 2θ.

Problem 20. zxx = 0, zyy = 4xe−2y, and zxy = zyx = −2e−2y.

Problem 26. zx = 1 and zy = 0, so an equation of the tangent plane is z − 1 = x.
(b) A normal vector to the tangent plane is 〈1, 0,−1〉, so parametric equations for the normal line
are x = t, y = 0, z = 1− t.

Problem 34. (a) dA = ∂A
∂x dx + ∂A

∂y dy = 1
2ydx + 1

2xdy.Since |∆x| ≤ .002m and |∆y| ≤ .002m

(mind your units!) the maximum error would be about 6(.002) + 5
2(.002) = .017m2.

(b) For the hypotenuse, h, we have dh = x√
x2+y2

dx + y√
x2+y2

dy. So the maximum error is about

dh = 5
13(.002) + 12

13(.002) ≈ .0026m.

Problem 40. A = 1
2 sin θ, so by the chain rule, dA

dt = 1
2

[
(y sin θ)dx

dt + (x sin θ)dy
dt + (xy cos θ)dθ

dt

]
.

For the given values, this works out to ≈ 60.8in2/s.

Problem 50. From problem N, we want the normal to both surfaces. One is given by N = ∇(z−
2x2 + y2) = 〈8, 4, 1〉 and the other by n = 〈0, 0, 1〉. So a tangent vector is given by N×n = 4i− 8j.
(You can figure this out without problem N, by saying that the tangent vector is perpendicular to
the normal vector to the curve 2x2 + y2 = 4 in the plane z = 4.) Hence parametric equations are
given by x = −2 + 4t, y = 2− 8t, z = 4.

Problem 52. fx = 3x2 − 6y, fy = −6x + 24y2. Solving fx = 0 gives y = 1
2x2, and then

substituting into fy = 0 gives 6x(x3 − 1) = 0. The critical points are then (0, 0) and (1, 1
2). The

second derivative test shows the first is a saddle, and the second is a local minimum.

Problem 54. fx = 2xey/2, fy = ey/2(2 + x2 + y)/2. So the only critical point is (0,−2), which is
a local minimum by the second derivative test.

Problems Plus
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Problem 4. Let’s show something less than was asked for, namely that the function is not
continuous if r ≤ 2. To do this, we need to show that the limit as (x, y, z) → (0, 0, 0) either does
not exist, or is not 0 if it does exist. Consider the function along the line (x, 0, 0), ie g(x) = xr

x2 . If
r = 2, this has limit 1, but that is not the value of the function at (0, 0, 0), so the function is not
continuous. If r < 2, then the limit certainly doesn’t exist, so again the function is not continuous.
(It turns out to be continuous if r > 2, but that takes considerable work to prove.)

Problem 7. There’s nothing else to do but plug in the expressions for x, y, and z in cylindrical
(part a) or spherical (b) coordinates and grind away with the chain rule. I’ll check your work if
you like.
Chapter 16.

True–False. 2 False. If you change the order of integration, the limits will be
∫ 1
0

∫ 1
y . 4. True (use

the fact that ey2
sin y is an odd function). 6. True: The integrand is ≤ 3, and the area of the base

is 3. (We didn’t actually discuss this in class, but it should make intuitive sense.)

Problem 4.
∫ 1
0

∫ 1
0 yexydxdy =

∫ 1
0 (ey − 1)dy = e− 2.

Problem 14. The region is to the right of the curve x =
√

y with 0 ≤ y ≤ 1. This can also

be described as 0 ≤ x ≤ 1, and below the curve y = x2. So the integral is
∫ 1
0

∫ x2

0
yex2

x3 dy dx =∫ 1
0

1
2xex2

dx = 1
4

[
ex2

]1

0
= 1

4(e− 1).

Problem 20. A picture would help.∫ 2

1

∫ y

1/y
y dx dy =

∫ 2

1
y

(
y − 1

y

)
dy =∫ (

1
y2 − 1)dy =

4
3
.

x

y

xy=1

y=2 x=y

Problem 22. Use polar coordinates:
∫ π/2
0

∫ √2
1 (r cos θ)rdrdθ = 1

3(23/2 − 1).

Problem 32. z ranges from 0 to 3− y = r − r sin θ. So the volume is∫ 2π

0

∫ 2

0

∫ 2−r sin θ

0
rdzdrdθ =

∫ 2π

0

∫ 2

0
(3r − r2 sin θ)drdθ = 12π.

Problems Plus

Problem 2. Divide the rectangle into two pieces, R1 and R2, according to whether x or y is larger.
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(This is the same as whether x2 or y2 is larger.) The integral splits accordingly, with the function
being ex2

on R1 and ey2
on R2 . The integral over R1 is

∫ 1
0

∫ x
0 ex2

dydx, while the integral over R2

is
∫ 1
0

∫ y
0 ey2

dxdy. The first one gives
∫ 1
0 xex2

dx = 1
2(e − 1); the second gives

∫ 1
0 yey2

dy = 1
2(e − 1)

so the total is (e− 1).

R1

R2

Chapter 17.

Problem 2. Use the parameterization x = t, y = t2 for t ∈ [0, 1]. We get ds =
√

1 + 4t2dt so the
integral becomes ∫ 1

0
t
√

1 + 4t2dt =
2
3

1
8

[
(1 + 4t2)3/2

]1

0
=

1
12

(53/2 − 1)

Problem 4. Set x = t and y = sin t. Then (use integration by parts for
∫

t sin t dt)∫
C

xy dx + y dy =
∫ π/2

0
t sin t dt + sin t cos t dt = [−t cos t + sin t +

1
2

sin2(t)]π/2
0 =

3
2

Problem 6.
∫

C

√
xy dx+ey dy+xz dz =

∫ 1

0

√
t6 4t3 dt+et2 2t dt+t7 3t2 dt =

[
4
7
t7 + et2 +

3
10

t10
]1

0

=

4
7

+ e− 1 +
3
10

.

Problem 8. First compute r′(t) = cos ti + j. Then (again with integrating by parts)∫
C
((1 + t) sin ti + sin2 tj) · (cos ti + j) dt =

∫ π

0
(1 + t) sin t cos t dt + sin2 t dt =

1
2

∫ π

0
(1 + t) sin 2t; dt + (1− cos 2t) dt =

1
2

[
−1

2
(1 + t) cos 2t +

1
4

sin 2t + t− 1
2

sin 2t

]π

0

=
π

4
.

Problem 10. The problem asks for the line integral
∫
C F · dr for two paths C = C1 or C2. Let

C1 be the straight line, where r1(t) = (1 − t)(3, 0, 0) + t(0, π/2, 3) and let C2 be the spiral where
r2(t) is given in the book. For the first integral, x = 3(1− t), y = π/2t and z = 3t, so the integral∫

C1

F·dr1 =
∫ 1

0
(3t)(−3)dt+(3−3t)(π/2)dt+(π/2t)(3)dt =

[
−9

2
t2 +

3π

2
t− 3π

4
t2 +

3π

4
t2

]1

0

= −9
2
+

3π

2
.

For the second integral, use the given parameterization (and note that t ∈ [0, π/2]):∫ π/2

0
(−9 sin2 t + 3 cos t + 3t cos t)dt =

[
−9

2
+

9
4

sin 2t + 3 sin t + 3(t sin t− sin t)
]π/2

0

= −3π

4
.
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Additional Problems.

Problem J. The first thing is to get a picture of the graph
of the polar curve r2 = 9 cos 5θ.This one is similar to the
graph of r = cos 2θ, done in section 11.3; the result is pictured
at right. The area is 5 times the area of one loop, which is
described by − π

10 ≤ θ ≤ π
10 . Thus the area is

-2

-1

0

1

2

-2 -1 1 2 3

45
∫ π

10

− π
10

∫ cos1/2(5θ)

0
rdrdθ =

45
2

∫ π
10

− π
10

cos(5θ)dθ =
9
2

[sin(5θ)]
π
10

− π
10

= 9.

(The answer in the book is 18; I don’t see where the factor of 2 went.)
For problem 34, we need a picture of the graphs of the polar curves
r = 2 + cos 2θ and r = 2 + sin θ. They are pictured together
at right; the first one is the peanut shaped region, and the
second is the more circular region. The area is twice the area
of the crescent-shaped region at lower right, which ranges
from θ = −π/2 to the θ that we get from solving 2+cos 2θ =
2 + sin θ. This is given by sin θ = 1

2 , i.e., by θ = π
6 . So ±1

1

2

3

±3 ±2 ±1 1 2 3

A = 2
∫ π/6

−π/2

∫ 2+cos 2θ

2+sin θ
rdrdθ

which is really too messy to work out.

Problem K. I claim that f must be a constant. This seems pretty obvious, but requires a bit
of proof. First, note that fx = 0, so by 1-variable calculus, f(x, y, z) is constant in x, ie can be
written as a function g(y, z). Now gy = fy = 0, so by the same argument g is constant in y, ie can
be written as a function h(z). Finally, hz = fz = 0, so again h is a constant. It follows that f is
this same constant.

Problem L. The hypothesis is just a way of writing that g = fx and h = fy. Now gy = fxy = fyx

(by Clairaut’s theorem) which is in turn just hx. Thus gy = hx as required.

Problem M. This is just a particularly succinct form of the chain rule. The less succinct version
is g′(t) = ∂F

∂x x′(t) + ∂F
∂y y′(t) + ∂F

∂z z′(t) = (∇F ) · r′(t).
Problem N. We showed earlier in the course that the tangent vector to a curve in a level surface
is orthogonal to the normal vector to that surface. (This followed from the chain rule: write the
curve as r(t) = (x(t), y(t), z(t)), and take d

dt of both sides of the equation F (x(t), y(t), z(t)) = 0.
By the chain rule, the left-hand side is ∇F · r′(t). But ∇F is the normal vector to the surface, and
r′ is the tangent vector to the curve.) Since the curve lies in both surfaces, it is orthogonal to ∇F
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and also to ∇G, ie orthogonal to both normals.

Problem O. Following the hint, let’s look at the product rule(s):

d

dt
(u(t) · v(t)) = u′(t) · v(t) + u(t) · v′(t), d

dt
(u(t)× v(t)) = u′(t)× v(t) + u(t)× v′(t).

From the first one, we have
∫

u(t) · v′(t) dt =
∫

d
dt(u(t) · v(t)) dt −

∫
u′(t) · v(t) dt, and using the

fundamental theorem of calculus,
∫

d
dt(u(t) · v(t)) dt = u(t) · v(t). The same argument works for

the cross product product rule.

8


