HOMEWORK 6: Knowledge of morphemes and language meaning

Answers

Question 1. Identifying morphemes (semantic criteria)

The following Persian words consist of two or more morphemes (xar mean “buy” and –id is past tense)

<table>
<thead>
<tr>
<th>Persian word</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. xaridam</td>
<td>I bought</td>
</tr>
<tr>
<td>2. xaridi</td>
<td>you(singular) bought</td>
</tr>
<tr>
<td>3. xarid</td>
<td>(he) bought</td>
</tr>
<tr>
<td>4. naxaridam</td>
<td>I did not buy</td>
</tr>
<tr>
<td>5. namixaridand</td>
<td>they were not buying</td>
</tr>
<tr>
<td>6. naxaridim</td>
<td>we did not buy</td>
</tr>
<tr>
<td>7. mixarid</td>
<td>(he) was buying</td>
</tr>
<tr>
<td>8. mixaridid</td>
<td>you(plural) were buying</td>
</tr>
</tbody>
</table>

(a) Try to match each of the following notions with a morpheme in Persian data in (1-8)

i. I __-am_____________________
ii. you (singular) _-i____________
iii. we ___________-im_____________
iv. you (plural) ____-_id________
v. they _______-and_____________
vi. not _______ na-_______________
vii. was/were + -ing (CONTINUOUS) ___mi-________________________________

(b) How would you say the following in Persian?

i. They were buying __________mixaridand________________________________
ii. You (singular) did not buy _______ naxaridi________________________________
iii. You (singular) were buying _______mixaridi________________________________
Question 2. Harris’ Conditions I and II.

Here is a bunch of utterances in Serbo-Croatian (no translation):

- Yacitam
- Yapiyem
- Ticitas
- Vicitate
- Oncita
- Onipiyu
- Tipyies
- Onpiye
- Mipiyemo
- Onicitayu
- Tipušis

(a) Use Harris’s condition I to divide the first four words into potential morphemes (remember, X and/or Y are not really necessary, just A, B, C, D). Show your work – what is A, what is B, etc., how you apply the test in the condition!

Take 1:

Ya+cita+m Just by eyeballing the data, this is the first hypothesis.
Ya+piye+m So, with ya+cita+m, we start with A=ya, B=cita, so the environment is ___m
Ti+cita+s Another place with this environment is ya+piye+m, but then ya repeats.
Vi+cita+te So, I can’t even start testing this one.
On+cita But we can do two morphemes at a time be A or B, so I’ll try A=ya, B=citam, so
On+i+pi(y?)+yu the environment is --- nothing.
Ti+piye+s Now, I’ll choose a one-(maybe-potential)-morpheme C and a two-…-morpheme D.
On+iye That’s easy: C1=ti D1=citas C2=ti D2=piyes C3=On D3=cita
Mi+piye+mo A+D1=yacitas C1+B=ticitam A+D2=yapiyes A+D3=yacita C3+B=oncitam
Oni+cita+yu None of them work!
Ti+puši+s Other attempts to work with this break-up don’t work either – either I cannot find different morphemes in the same environment, or, when I find them, the exchange fails.

Take 2:

Notice, that ya seems to go with m, ti goes with s, vi goes with te, mi appears with mo, and there are two variations starting with on: on and nothing at the end after cita or piye, and then oni that goes with yu. Suppose these pieces are each, one morpheme:

A= ya__m B= cita (and nothing environment)
C1=ti__s D= piye A+D = yapiyem (yes!) C1+B=ticitam (yes!) C2+B=vicitate
C2=vi__te D=piye they all work; done.

Here are some non-utterances (ungrammatical strings of sounds) in Serbo-Croatian (no translation):

- *Yacitas
- *Yaomn
- *Tipyiu
- *Yayabukam
- *Tiyabakas
- *Onyabuka
- *Viyabukate
- *Oniyabukayu
- *Yacita
- *Yacita
- *Mijabukamo
- *Yazelenm
- *Tizelens
- *Onizelenyu
(b) Use Harris’s condition II to determine if \textit{cita} and \textit{piye} are actual morphemes. \textbf{Again, show your}
work – \textbf{what are the sets, how you apply the test in the condition, etc.}!
The sets of morphemes that work with \textit{cita} and \textit{piye} (set a) and of those that don’t work with them (set b). \textit{Oni_yu} seems to take away the \textit{e} or \textit{ye} off \textit{piye}, but I’ll include it anyway.
Set a = \{\textit{ya_m, ti_s, on_}, \textit{oni_yu, mi_mo, vi_te}\} (from the first bunch of data)
Set b = \{\textit{ya_s, ti_}, \textit{ya_}\}
Now, what are the environments in which all the things in Set a behave the same (and differently from
Set b)?
Well, first two are easy: all the potential morphemes in Set a work with \underline{____\textit{cita}____}, and \underline{____\textit{piye}____}, ones in Set b don’t.
The second set of data (ungrammatical strings) gives two more: all the potential morphemes in Set a do
not work with \underline{____\textit{yabuka}____}, nor with \underline{____\textit{zelen}____}.
So, all the potential morphemes in Set a behave as a class. So, \textit{cita} and \textit{piye} attach to this class of
morphmes – they are actual morphemes according to this test.

\textbf{Question 3. Entailment vs implicature}

Look at the following pairs of sentences, and tell whether the A sentence \textit{entails} the B sentence, whether
the entailment holds from the B sentence to the A sentence, or neither, or both. Use the symbol => to
indicate entailment.

1. A. Homer ate the donuts. \textbf{A}=>\textbf{B} \hspace{1em} \text{There is no way that Homer ate donuts & didn’t eat food}
 B. Homer ate food. \hspace{1em} \textbf{B} \hspace{1em} \neq \hspace{1em} \textbf{A} \hspace{1em} \text{Easily, Homer could’ve eaten food & not donuts}

2. A. Someone tried to kill Mr. Burns. \hspace{1em} \textbf{A} \hspace{1em} \neq \hspace{1em} \textbf{B} \hspace{1em} \text{Easily, someone but not everyone could’ve tried}
 B. Not everyone tried to kill Mr. Burns. \hspace{1em} \textbf{B} \hspace{1em} \neq \hspace{1em} \textbf{A} \hspace{1em} \text{If noone tried, then B is true, but not A}

3. A. Every boy loves Lisa. \hspace{1em} \textbf{Actually A} \hspace{1em} \neq \hspace{1em} \textbf{B} \hspace{1em} \text{– in a world with no boys, we can say “Every boy
 loves Lisa” truthfully (or “Every pink dragon loves Lisa”). But of course, in the actual
 world (as long as there is at least one boy), A=>B.}
 B. Some boy loves Lisa. \hspace{1em} \textbf{B} \hspace{1em} \neq \hspace{1em} \textbf{A} \hspace{1em} \text{If some boy loves Lisa, but not every boy.}

4. A. John has only one leg. \hspace{1em} \textbf{A}=>\textbf{B} \hspace{1em} \text{If John has only one, he has one for sure.}
 B. John has one leg. \hspace{1em} \textbf{B} \hspace{1em} \neq \hspace{1em} \textbf{A} \hspace{1em} \text{I did this one in class: If he has one, he could have two.}