The point of introducing linear independence is the following key lemma:

Lemma 12 (The Steinitz exchange lemma). We work with a vector space V. Suppose that A is a finite spanning set, and B is a finite linearly independent set. Write $\#B$ for the number of elements of B. Then we can remove $\#B$ elements from A, getting a smaller set A' such that $A' \cup B$ is still a spanning set.

In particular, this means that A must contain at least $\#B$ elements.

Proof. We proceed by induction on the number of elements of the set B. If the set B is empty, then what we are asked to prove is trivial. So let’s assume that B contains at least one element. Then we can single out one element from B from the rest, writing $B = \{b_1\} \cup \{b_2,\ldots,b_k\}$. (So $k = \#B$.)

Now, $\{b_2,\ldots,b_k\}$ is still a linearly independent set, being a subset of B, and it has $k - 1$ elements: fewer elements than B. Thus by induction, we may assume that our result is true for A and $\{b_2,\ldots,b_k\}$, and we can eliminate $k - 1$ elements from A, getting a new set A'' such that $A'' \cup \{b_2,\ldots,b_k\}$ is a spanning set. We’ll write $B_1 = \{b_2,\ldots,b_k\}$ for short, and we’ll spell out the elements of A'' as $\{a_2'',\ldots,a_r''\}$.

Since $A'' \cup B_1$ is a spanning set, we can write b_1 as a linear combination of the elements of $A'' \cup B_1$:

$$b_1 = \alpha_1 a_1'' + \alpha_2 a_2'' + \cdots + \alpha_r a_r'' + \beta_2 b_2 + \cdots + \beta_k b_k$$

Now, we can’t have all of the α_i be zero, otherwise

$$0 = (-1)b_1 + \beta_2 b_2 + \cdots + \beta_k b_k$$

which would mean that the b_i were linearly dependent, contrary to assumption. Thus some α_i is nonzero; reordering, let’s suppose it’s the first one. Then

$$a_1'' = (1/\alpha_1)b_1 + (-1/\alpha_1)\alpha_2 a_2'' + \cdots + (-1/\alpha_1)\alpha_r a_r'' + (-1/\alpha_1)\beta_2 b_2 + \cdots + (-1/\alpha_1)\beta_k b_k$$

Now, since $A'' \cup \{b_2,\ldots,b_k\}$ is a spanning set, so $A'' \cup B$ is a spanning set; and thus, since a_1'' can be expressed as a linear combination of other elements of $A'' \cup B$, $\{a_2'',\ldots,a_r''\} \cup B$ is a spanning set. But then we are done, taking $A' = \{a_2'',\ldots,a_r''\}$. \qed

Corollary 13. Suppose V is a vector space, and B_1 and B_2 are two finite bases for V. Then $\#B_1 = \#B_2$.

Proof. Since B_1 is a finite spanning set and B_2 is a finite linearly independent set, the lemma tells us B_2 has at least as many elements as B_1. On the other hand, since B_2 is a finite spanning set and B_1 is a finite linearly independent set, the lemma tells us B_1 has at least as many elements as B_2. We are therefore done. \qed

Corollary 14. Suppose V is a vector space, and B_1 and B_2 are two bases, one of which is infinite. Then the other is also infinite.

Proof. Suppose for contradiction that B_1 is infinite, and B_2 is finite. Let m denote the number of elements of B_2. Since B_1 is infinite, we can find some $m + 1$ elements of B_1, making a finite set B_1' which is linearly independent, being a subset of B_1, which was a basis and hence linearly independent. Since B_1' is linearly independent, and B_2 is a spanning set, B_1' must have no more elements than B_2, so $m + 1 \leq m$, a contradiction. \qed

Corollary 15. Suppose V is a vector space. Any two bases for V have the same number of elements, in the sense that either they are both infinite, or they are both finite with the same number of elements.

Fact 16. Every vector space has some basis.