Throughout this lecture, K will be a subfield of \mathbb{R}.

Lemma 7. Suppose that Γ is a circle defined over K. Suppose that ℓ is a line defined over K. Suppose finally that Γ and ℓ intersect in at least one point, P say. Then we can find a subfield K' of \mathbb{R} containing K, such that:

1. P is defined over K, and

Proof. By the assumption that Γ and ℓ are defined over K, we can write equations:

$$x^2 + y^2 + Ax + By + C = 0$$

and

$$ax + by + c = 0$$

for Γ and ℓ respectively, where A, B, C, a, b and c are in K.

Now, we know that one of a and b is not 0. We will handle the case where $a \neq 0$; if $b \neq 0$, we could proceed with exactly the same argument with the roles of x and y swapped over. (This is an example of making an assumption without loss of generality.) Then given that $a \neq 0$, we can divide the line equation through by a rewriting it as

$$x + by + c = 0$$

(where this b and c might be different to the original ones).

Let (χ, γ) be the coordinate of P, and let $K' = K[\gamma] \subset \mathbb{R}$. We will show that this satisfies the two properties we require. We first see that P is defined over K'. Obviously, $\gamma \in K'$, and it is also the case that $\chi = -b\gamma - c$ is in K'. Thus P is defined over K'. It remains to show $[K' : K] = 2$

We know that (χ, γ) satisfies the equation of Γ, so

$$\chi^2 + \gamma^2 + A\chi + B\gamma + C = 0$$

and then, using the fact that $\chi = -b\gamma - c$, we see that

$$(b^2 + 1)\gamma^2 + 2bc\gamma + c^2 + B\gamma - Ab\gamma - Ac + C = 0$$

that is,

$$(b^2 + 1)\gamma^2 + (2bc + B - Ab)\gamma + c^2 + C = 0$$

So γ satisfies the polynomial

$$P(T) = (b^2 + 1)T^2 + (2bc + B - Ab)T + c^2 + C = 0.$$

The coefficients of this polynomial are in K. Thus the minimal polynomial of γ divides into $P(T)$, and so the degree of the minimal polynomial is at most the degree of $P(T)$. So the degree of the minimal polynomial is 1 or 2.

But then $[K[\gamma] \subset \mathbb{R} : K] = 2$ or $[K[\gamma] \subset \mathbb{R} : K] = 1$. \square

Lemma 8. Suppose Γ_1 and Γ_2 are two circles which are defined over K. Suppose also that Γ_1 and Γ_2 intersect in at least one point, P say. Then we can find a subfield K' of \mathbb{R} containing K, such that:

1. P is defined over K, and

Proof. By the assumption that Γ_1 and Γ_2 are defined over K, we can write equations:

\[x^2 + y^2 + A_1 x + B_1 y + C_1 = 0 \]

and

\[x^2 + y^2 + A_2 x + B_2 y + C_2 = 0 \]

for Γ_1 and Γ_2 respectively, where A, B, C, a, b and c are in K. We know that P is a solution to these two equations. But that means it is a solution both to the difference of those two equations, viz:

\[(A_1 - A_2)x + (B_1 - B_2)y + (C_1 - C_2) = 0\]

which describes a line, ℓ say, defined over K. Thus P is on the intersection of Γ_1 and ℓ, and hence (by the previous lemma) we can find a subfield K' of \mathbb{R} containing K with the properties we require. \qed