Fields were intended to capture our intuitions from \(\mathbb{Q} \). What about \(\mathbb{Z} \)?

Definition 8. A commutative ring is a set equipped with two binary operations + and \(\times \) which satisfy all the field axioms except M4 (the existence of multiplicative identities). A not-necessarily-commutative ring also omits axiom M3, and also beefs up axiom M1 to say \(1a = a = a1 \) for all \(a \) and beefs up axiom AM1 to say \(a(b + c) = ab + ac \) and \((b + c)a = ba + bc \). In this class, we will almost entirely be concerned with commutative rings, and when I say ‘ring’ without qualification (something I’ll try to avoid doing), I mean ‘commutative ring’. (The book, by contrast, means not-necessarily-commutative ring.)

(Remark: sometimes people omit the axiom M1 from the ring axioms, and call rings that satisfy it ‘rings with unit’. For us, though, all rings have unit.)

Proposition 9. All the facts in Proposition 2 (lecture 5) are all true for any ring, not just any field.

Proof. A quick examination of the proof of Proposition 2 reveals we never used axiom M4. \(\square \)

On the other hand, the proof of Proposition 5 (which said that if \(ab = 0 \) then either \(a = 0 \) or \(b = 0 \)) did use axiom M4. Thus the conclusion of Proposition 5 need not be true in an arbitrary ring.

Definition 10. Let \(R \) be a commutative ring. If it is the case that whenever \(a, b \in R \) satisfy \(ab = 0 \), then we can conclude that \(a = 0 \) or \(b = 0 \), then we say \(R \) is an integral domain (or just domain for short).

Example 11. Every field is of course an example of a domain (e.g \(\mathbb{R}, \mathbb{C}, \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R} \)).

Example 12. The integers \(\mathbb{Z} \) form a commutative ring, which is even a domain.

Example 13. The collection of 2 by 2 matrices forms a not-necessarily-commutative ring.

Example 14. The collection of polynomials with real coefficients form a commutative ring. This ring is denoted by something like \(\mathbb{R}[X], \mathbb{R}[T], \mathbb{R}[x] \) or \(\mathbb{R}[t] \), depending on which letter we are using to denote the variable of the polynomial. In fact, this is a domain; if \(p(x)q(x) = 0 \), then we can write \(p(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0 \) and \(q(x) = bmx^m + b_{m-1}x^{m-1} + \cdots + b_0 \), where \(a_n \) and \(b_m \) are not 0. Then we can work out that \(p(x)q(x) = a_nb_mx^{n+m} + \cdots \), which is not zero (as \(a_nb_m \neq 0 \)).

Example 15. Similarly, we can construct rings \(\mathbb{Q}[T] \) (polys with rational coeffs) and \(\mathbb{C}[T] \). In fact, we can do this for any field. (The result will still always be a domain; why?) Thus, for instance, if \(F \) is the ‘mystery field’ from the first lecture, then \(F[X] \) makes sense and is a domain.

Example 16. Suppose \(R_1 \) and \(R_2 \) are commutative rings (possibly, both the same ring). We can cook up another ring \(R_1 \times R_2 \) out of them as follows. The elements of \(R_1 \times R_2 \) consist of pairs \((r_1, r_2)\) where \(r_1 \in R_1 \) and \(r_2 \in R_2 \). We multiply and add using the formulas

\[
(r_1, r_2) \times (r_1', r_2') = (r_1 \times r_1', \ r_2 \times r_2') \quad \text{multiply in } R_1 \times \text{multiply in } R_2
\]

\[
(r_1, r_2) + (r_1', r_2') = (r_1 + r_1', \ r_2 + r_2') \quad \text{add in } R_1 \times \text{add in } R_1
\]

It is easy to check that this gives us a ring structure.\(^1\) But, this is not a domain, even if \(R_1 \) and \(R_2 \) were domains.

\(^1\)In fact, this would work with not-necessarily-commutative rings too.