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Abstract

In this thesis, we define the toppling Betti numbers and minimal free resolutions of
toppling ideals. We give a proof of the Riemann-Roch Theorem first stated and proved
in (1), and use the theorem to prove that the last Betti number of an undirected graph
is the number of minimal recurrent configurations. We describe a minimal complex
that we conjecture to be a free resolution for a toppling ideal, and use the conjecture
to compute the Betti numbers of several graphs.





Introduction

The abelian sandpile model was originally proposed as a computationally-tractable
model of self-organized criticality (3). Since then, several authors have applied the
model in studying algebraic graph theory, for example in (8) and (1). The goal of
this thesis is to use the sandpile model to make new connections between algebra
and graph theory by developing new algebraic graph invariants and studying their
connection with graph structure.

The applications of this thesis will be twofold. First, by creating new algebraic
graph invariants based on the sandpile model, we may better understand the combi-
natorial structure of graphs. The flow of sand through a multigraph according the
sandpile model intuitively reflects classical ideas from graph theory, such as circu-
lations, flows, and cuts. It is natural to hope that algebraic constructions built on
the model might reflect graph structure in useful ways. And in fact, Conjecture 3.28
describes the connected partitions of a graph via the minimal free resolution of the
toppling ideal.

The second application of this thesis is to algebra. It was shown in (11) that any
lattice ideal defining a finite set of points is the lattice ideal of some sandpile graph.
Hence, by giving a graph-theoretic description of toppling ideals, we provide new
combinatorial tools for studying general algebraic objects. Again, Conjecture 3.28
provides a simple (though still computationally intractable) combinatorial method for
constructing a minimal free resolution of certain ideals. The conjecture also provides
immediate access to a minimal generating set for the ideal.

Chapter 1 of this thesis reviews the basic ideas of the sandpile model, along with
some of the notation and more recent developments of (1). In Chapter 2, we prove
the graph-theoretic version of the Riemann-Roch Theorem first proposed and proved
in (1). Our proof is somewhat different, but ultimately founded on the same ideas,
and a central goal of the chapter is to show how a number of variously defined objects
interrelate. This is accomplished in Theorems 2.7 and 2.13. The main goal of the
chapter, however, is simply to develop the foundation for Theorem 3.10. Chapter 3
defines new algebraic graph invariants, in particular the toppling Betti numbers and
minimal free resolution of the quotient of the toppling ideal. These invariants were
first defined in (11). In Theorem 3.10, we prove that the last Betti number of an
undirected graph is the number of minimal recurrent configurations on the graph.
Finally, we define a sequence of mappings of free modules built from the connected
partitions of a graph and propose in Conjecture 3.28 that this sequence is in fact a
minimal free resolution for the quotient of the toppling ideal. We provide a partial



2 Introduction

proof, showing that it is at least a minimal complex. The final chapter supposes
Conjecture 3.28 holds and uses it to compute minimal free resolutions for trees and
complete graphs, and proves a few straightforward corollaries about how the structure
of graphs relates to the Betti numbers.

In summary, this thesis attempts to build new bridges between algebra and com-
binatorics, in the hope that algebraists and graph theorists alike will traverse them.



Chapter 1

Preliminaries

Dhar’s abelian sandpile model, first introduced in (3), is the foundation for the alge-
braic graph theory studied in this thesis. In this chapter, we define the basic ideas
of the sandpile model and state a number of well-known results that we will use
throughout the thesis. Some familiarity with basic graph theory is assumed, but the
reader is referred to Appendix A for a brief review of the fundamentals.

Assumption. Γ is an Eulerian directed multigraph without loops on the vertex set
{1, . . . n}.

The group Div(Γ) of divisors on Γ is the free abelian group on the vertices of the
graph. A divisor D ∈ Div(Γ) is generally written as a formal sum D =

∑

v∈V (Γ) avv

for some integers av. For such a divisor, we define Dv = av, so for any D ∈ Div(Γ),
we have D =

∑

v∈V (Γ)Dvv. The group Script(Γ) of scripts on Γ is also the free
abelian group on the vertices of the graph, with similar notation. We denote the
identity element of either group by ~0, and define ~1 =

∑

v∈V (Γ) v. The distinction
between scripts and divisors is made so that we may define the dualized Laplacian

map ∆t : Script(Γ) → Div(Γ) by

∆tσ =
∑

uv∈E(Γ)

σu(u− v)

where σ ∈ Script(Γ). In particular,

(∆tσ)v = σv outdeg(v)−
∑

vw∈E(Γ)

σw.

The divisor D′ obtained by firing the script σ from the divisor D is

D′ = D −∆tσ.

We also say that σ takes D to D′. The following proposition is straightforward.

Proposition 1.1. Script(Γ) acts on Div(Γ) by firing, i.e. by the group action

σ ·D = D −∆tσ.



4 Chapter 1. Preliminaries

The dualized Laplacian ∆t is, as one might expect, the dual of the usual Laplacian
operator on graphs, as defined in e.g. (6). It is straightforward to verify that ker∆t =
Z~1. (Certainly Z~1 ⊂ ker∆t, but by the matrix-tree theorem, rank∆t = n− 1.) This
property does not hold in general for non-Eulerian graphs, which is one reason we
prefer Eulerian graphs in this thesis.

One intuitive understanding of divisors, scripts, and the firing action involves
playing a money-trading game among a group of acquaintances. Each person is
identified with a vertex of the graph, with (one-way) friendships corresponding to the
edges of the graph in the natural way. We think of a divisor D as assigning to each
person a certain amount of money or debt, so that person v has Dv dollars. A script
is then a recipe for sharing money within the network. In particular, for a given
vertex v, the script σ = v causes person v to give one dollar to each of his friends.
(When person v is doubly friendly with person w, i.e. when vw appears in E(Γ) with
multiplicity two, σ causes v to give two dollars to w, etc.) If person v does not have
enough money for such a gift, rather than provoking jealousy among his friends, σ
compels v to go into debt. Following (3), we will use a different analogy: a divisor
corresponds to a certain amount of sand at each vertex of the graph, and firing a
script causes a corresponding number of sand grains to be sent along each edge to an
adjacent vertex. Though we prefer this analogy for historical reasons, the notion of
a negative quantity of sand is less compelling.

For D ∈ Div(Γ), define the support of D by

supp(D) = {v ∈ V (Γ) : Dv 6= 0}.

We have a partial ordering ≤ on Div(Γ) defined component-wise, i.e. D ≤ E when
Dv ≤ Ev for every v ∈ V (Γ). If D ≥ 0, we say that D is effective. The support and
effectiveness of scripts are defined identically. We say that two divisors D and E are
linearly equivalent, and write D ∼ E, if there exists a script σ taking D to E. The
linear system |D| of D is defined by

|D| = {E ∈ Div(Γ) : E ∼ D and E ≥ 0}.

In other words, |D| is the set of effective divisors linearly equivalent to D. We define
the class group Cl(Γ) of Γ as Div(Γ) modulo linear equivalence. Often, we will
identify [D] ∈ Cl(Γ) with a representative element D. The degree deg(D) of a
divisor D is defined as

deg(D) =
∑

v∈V (Γ)

Dv.

For a vertex set U ⊆ V (Γ), define the divisor or script

χU =
∑

u∈U

u.

We will sometimes identify U with χU .
For D ∈ Div(Γ), a script σ is legal from D if no vertex v with Dv nonnegative

has (σ ·D)v negative, i.e. no σ ·D is nonnegative on supp(σ). If S = σ1, . . . , σk is a



5

sequence of scripts, it is legal from D if for 1 ≤ i ≤ k, the script σi is legal from the

divisor Di−1 =
(

∑i−1
j=1 σj

)

·D obtained by firing the first i − 1 scripts in S from D.

Often, S will be a sequence of vertices, or vertex subset of Γ, in which case we will
consider it to be a sequence of scripts in the natural way. We will sometimes refer
to such S as legal vertex firing sequences or legal set firing sequences. Observe that
v ∈ V (Γ) is legal as a script from D if Dv ≥ outdeg(v).

Given a legal vertex firing sequence v1, . . . , vk from D ∈ Div(Γ), note that the
script σ =

∑k

i=1 vk is also legal from D. However, the converse does not hold. Given
a script σ legal from D, there is in general no legal vertex firing sequence v1, . . . , vk
such that σ =

∑k

i=1 vk. As a counterexample, consider the graph K3 with one grain
of sand on each of two vertices, and zero grains on the remaining vertex. No vertex
may be legally fired on its own, but it is possible to fire the support of the divisor.

Remark 1.2. For any linearly equivalent divisors D and E, there exists a unique
minimal effective script taking D to E, that is, a script σ ≥ 0 such that for any
other σ′ ≥ 0 taking D to E, σ ≤ σ′. Certainly for any D ∼ E, there is some script σ,
possibly not effective, taking D to E. But ~1 ∈ ker∆t, so σ+ k~1 also takes D to E for
all k ∈ Z. Let k be minimal so that σ + k~1 ≥ 0. Since in fact ker∆t = Z~1, we have
that σ + k~1 is the unique minimal effective script taking D to E. For any minimal
effective script σ, there is some vertex v such that σv = 0. Minimal effective scripts
are often easier to work with than arbitrary scripts, so we will use them extensively.

Although legal firing scripts are convenient tools, they are functionally equivalent
to legal set firing sequences. The following is noted in (6).

Proposition 1.3. Suppose an effective script σ is legal from D ∈ Div(Γ). Let k =
max{σv : v ∈ V (Γ)}, and for 1 ≤ i ≤ k define Vi = {v ∈ V (Γ) : σv ≥ i}. Then
S = Vk, Vk−1, . . . , V1 is a legal set firing sequence from D such that firing S results in
σ ·D.

A sink for Γ is an arbitrary fixed vertex s. Given a sink s, we define the set of
non-sink vertices Ṽ (Γ) = V (Γ) \ {s}. A configuration c on Γ is a restriction of a
divisor D to the non-sink vertices, c = D|Ṽ (Γ) =

∑

v∈Ṽ (Γ) Dvv. A vertex v ∈ V (Γ) is

said to be unstable for a divisor D if Dv ≥ outdeg(v), i.e. if v is a legal script from
D; a divisor D is stable if every vertex is stable for D, and otherwise D is unstable. A
divisor (or a configuration) is stabilized relative to s by firing the unstable vertices
in Ṽ (Γ) until a stable divisor is obtained. The stabilization process behaves well,
according to Lemmas 2.4 and 2.5 of (6):

Theorem 1.4. The stabilization process always terminates. Given a divisor D and
a sink s, the divisor D◦ obtained by stabilizing D relative to s is independent of the
choice of unstable vertex firings.

The maximal stable divisor Dmax is the divisor

Dmax =
∑

v∈V (Γ)

(outdeg(v)− 1)v,
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so called because it is stable and Dmax ≥ E for any stable divisor E. Given a
sink s, the maximal stable configuration cmax is the corresponding configuration,
cmax = Dmax|Ṽ (Γ). A configuration is recurrent if it is obtained by stabilizing a
configuration of the form cmax + c for some effective configuration c. The following
theorem is straightforward, and is entailed by Lemmas 2.13 and 2.15 of (6).

Theorem 1.5. Given a sink s, every divisor class [D] ∈ Cl(Γ) contains a unique
divisor E such that E|Ṽ (Γ) is recurrent.

The following is given as Theorem 2.23 of (11), but a version appears as early as
(3).

Theorem 1.6. For D ∈ Div(Γ) and a sink s, define the script σ = s. Then the
following are equivalent:

(1) D|Ṽ (Γ) is recurrent.

(2) The stabilization of σ ·D is D.

(3) In stabilizing σ ·D, every non-sink vertex fires exactly once.

Theorem 1.7 (Corollary 2.16 (6)). Given a sink s, the set of recurrent configurations
on Γ form a group under the operation of addition and subsequent stabilization.

The group defined in Theorem 1.7 is called the sandile group of Γ, and is inde-
pendent up to isomorphism of the choice of sink. It is the best known algebraic graph
invariant arising from the sandpile model, but it will not be studied in this thesis.

Since stabilization is the process of firing a maximal sequence of legal vertices
from a configuration, it is natural to ask what happens if we instead fire legal sets of
non-sink vertices until no legal set firings remain. This process is called superstabi-

lization, and similar results hold for superstabilization as for ordinary stabilization.
For example, by Corollary 4.6 of (6), we have the following theorem.

Theorem 1.8. Given a sink s and a divisor D, the superstabilization process termi-
nates with a divisor D◦ independent of the choice of set firings.

We say a configuration is superstable if it is obtained by superstabilization of an
effective configuration. Theorem 4.4 of (6) states that the superstable configurations
are dual to the recurrent configurations:

Theorem 1.9. A configuration c is superstable iff cmax − c is recurrent.



Chapter 2

The Riemann-Roch Theorem for

Graphs

In this chapter, we develop the tools needed to prove the Riemann-Roch Theorem for
graphs given by Baker and Norine in (1). Although our proof appears rather different
from that given by Baker and Norine, the underlying ideas are identical. In fact, the
divisor νP for a linear order <P of V (Γ) in that paper is exactly the divisor Dmax−DP

defined in this chapter. We attempt to connect these ideas, and others, in Lemma
2.7 and Theorem 2.13. Our methods, however, are slightly more general than those
appearing in (1) so that they can be of greater service in subsequent chapters.

If σ is a script, then D is effective relative to σ if D is effective and σ is a legal
firing from D. Similarly, for S = σ1, . . . , σk a sequence of scripts on Γ, a divisor D
on Γ is effective relative to S if D is effective and S is a legal firing sequence from
D. A divisor D is a minimal effective divisor relative to a sequence S of scripts
if it is an effective divisor relative to S, and for any other divisor E effective relative
to S, E 6≤ D.

Proposition 2.1. Let S = σ1, . . . , σk be a sequence of scripts on Γ. Then there exists
a unique minimal effective divisor relative to S.

Proof. Define D0 = ~0, and for 1 ≤ i ≤ k, define Di by

(Di)v = max{(Di−1)v, (∆
tσi)v} − (∆tσi)v.

Thus, Di is obtained from Di−1 by adding the minimum amount of sand such that σi

can be legally fired, and then firing σi. Finally, fire in reverse every script in S fromDk,
obtainingD = Dk+∆t

∑

1≤i≤k σi. We claim thatD is effective relative to S. Certainly
the result holds when k = 0, so suppose for induction that the proposition holds for
all sequences of scripts of length k−1 with k ≥ 1. Then, D′ = Dk−1+∆t

∑

1≤i≤k−1 σi
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is effective relative to S ′ = σ1, . . . , σk−1. Since Dk +∆tσk ≥ Dk−1, we have

D = Dk +∆t
∑

1≤i≤k

σi

≥ Dk−1 +∆t
∑

1≤i≤k−1

σi

= D′

and so D is also effective relative to S ′. Firing S ′ from D, we obtain Dk + ∆tσk,
whence we may legally fire σk. Thus, D is indeed effective relative to S.

Finally, observe that if E is effective relative to S, we may define effective divisors
E0 = E and Ei = Ei−1 − ∆tσi for all 1 ≤ i ≤ k, so that (Ei−1)v ≥ (∆tσi)v. Now
E0 ≥ D0, and supposing that Ei−1 ≥ Di−1 for i < k, we have

(Ei)v = (Ei−1)v − (∆tσi)v

= max{(Ei−1)v, (∆
tσi)v} − (∆tσi)v

≥ max{(Di−1)v, (∆
tσi)v} − (∆tσi)v

= (Di)v

Hence, by induction on i, Ek ≥ Dk, and so E ≥ D. It follows that D is the unique
minimal effective divisor relative to S.

Henceforth, for S = σ1, . . . , σk a sequence of scripts, we will denote the minimal
effective divisor relative to S by DS. Occasionally, when S is equally a sequence of
scripts for a graph Γ′ as for Γ, we will use the notation DS

Γ to specify the minimal
effective divisor on Γ relative to S. An explicit formula for a special case of DS is
given as Lemma 2.4.

Lemma 2.2. Let S = σ1, . . . , σk be a sequence of scripts such that
∑

σ∈S σ = ℓ~1 for
some integer ℓ. Then for all 1 ≤ i ≤ k the divisor

Di =

(

∑

j≤i

σj

)

·DS

obtained by firing the first i scripts of S from DS is the minimal effective divisor
relative to Si = σi+1, . . . , σk, σ1, . . . , σi.

Proof. Certainly Di is effective relative to S ′ = σi+1, . . . , σk. Observe that by firing S ′

from Di, we obtain DS once again since ℓ~1 ∈ ker∆t. Since DS is effective relative to
σ1, . . . , σi, it follows that Di is effective relative to Si. Now for any divisor E effective
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relative to Si, we have that (
∑

j>i σj) · E is effective relative to S. It follows that

E ≥

(

−
∑

j>i

σj

)

·DS

=

(

−~1 +
∑

j≤i

σj

)

·DS

=

(

∑

j≤i

σj

)

·DS

= Di

and so Di is the minimal effective divisor relative to Si.

Definition 2.3 (k-partition). A k-partition of Γ is a partition of V (Γ) into k pairwise-
disjoint nonempty subsets V1, . . . , Vk. The k-partition is strongly connected if the
induced subgraph on Vi is strongly connected for all i.

By Pk(Γ) we will denote the set of strongly connected k-partitions of Γ. Often it
will be useful to order the sets of a k-partition, so by Sk(Γ) we will denote the set of
all strongly connected k-partitions with orderings, i.e.

Sk(Γ) = {Vτ(1), . . . , Vτ(k) : {V1, . . . , Vk} ∈ Pk(Γ), τ ∈ Sk}.

Thus, every element of Sk(Γ) is also an element of Pk(Γ) in the natural way. We now
briefly pause our progress toward the Riemann-Roch theorem to give the following
convenient formula.

Lemma 2.4. Let Γ be undirected and fix S = V1, . . . , Vk ∈ Sk(Γ). Then for v ∈ Vi,

DS
v =

∑

i<j≤k

wt(v, Vj).

Proof. Define D by

Dv =
∑

i<j≤k

wt(v, Vj)

so that for v ∈ V1,

(χV1
·D)v =

∑

1<j≤k

wt(v, Vj)−



(χV1
)vdv −

∑

vw∈E(Γ)

(χV1
)w





= wt(v, V (Γ) \ V1)−









dv −
∑

vw∈E(Γ)
w∈V1

1









= wt(v, V (Γ) \ V1)− wt(v, V (Γ) \ V1)

= 0.
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It follows that χV1
is legal from D, but χV1

is not legal from D − v for v ∈ V1.
Now let Ui = Vi+1 for 1 ≤ i ≤ k − 1 and Uk = V1. Write S ′ = U1, . . . , Uk, so S ′ is

a rotation of S. Define E by

Ev =
∑

i<j≤k

wt(v, Uj).

For v ∈ Vi with i 6= 1 we have

(χV1
·D)v =

∑

i<j≤k

wt(v, Vj)−



(χV1
)vdv −

∑

vw∈E(Γ)

(χV1
)w





=
∑

i<j≤k

wt(v, Vj) +
∑

vw∈E(Γ)
w∈V1

1

=
∑

i<j≤k

wt(v, Vj) + wt(v, V1)

= Ev,

and certainly by the previous display, (χV1
·D)v = 0 = Ev for v ∈ V1. The proposition

follows by induction and Lemma 2.2.

For S = V1, . . . , Vk ∈ Sk(Γ), we have supp(χV1
·DS) ∩ V1 = ∅ by the minimality

of DS. Hence, by Lemma 2.2, the divisor obtained by firing the first ℓ sets of S from
DS is not supported on Vℓ. In fact, we have the following theorem.

Theorem 2.5. Fix S = V1, . . . , Vk ∈ Sk(Γ). Then for all E ∈ |DS|, there exists
Vi ∈ S such that the support of E is disjoint from Vi.

Proof. Suppose E ∈ |DS| is such that for all Vi ∈ S, we have supp(E) ∩ Vi 6= ∅. Let
σ be the minimal effective script taking E to DS, and let ℓ be minimal such that

supp(σ) ∪
⋃

i≤ℓ

Vi = V (Γ),

so Vℓ is the last set of vertices in S to completely fire in the sequence of firings
σ, χV1

, . . . , χVk
. Certainly ℓ > 0 since σ does not have full support. Define

σℓ = σ +
∑

1≤i≤ℓ

χVi
,

and note that σℓ ≥ ~1. We may then define σ′
ℓ = σℓ − ~1, so σ′

ℓ ≥ 0 acts identically to
σℓ on Div(Γ). Finally, define Dℓ = σℓ · E, and note that

Dℓ =

(

∑

1≤i≤ℓ

χVi

)

·DS,
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that is, Dℓ is the divisor obtained by firing the first ℓ sets of S from D. Recall that
Dℓ is not supported on Vℓ.

Fix u ∈ Vℓ ∩ supp(E). Since Dℓ = σ′
ℓ ·E is not supported on Vℓ, u must fire when

σ′
ℓ does. However, by the definition of ℓ, there is some v ∈ Vℓ such that (σℓ)v = 1, so

that (σ′
ℓ)v = 0. Hence, since Vℓ is strongly connected and a proper subset of Vℓ fires

when σ′
ℓ does, there are vertices x, y ∈ Vℓ such that xy ∈ E(Γ), x ∈ supp(σ′

ℓ), and
y /∈ supp(σ′

ℓ). Hence, y gains sand from x when σ′
ℓ fires, so Dℓ is supported on Vℓ.

We have a contradiction, and so conclude that no such E exists.

In particular, if a D is a minimal effective divisor relative to an ordering of the
vertices of Γ, then no divisor in |D| has full support.

Definition 2.6 (Alive). A divisor D ∈ Div(Γ) is alive if σ · D is unstable for all
scripts σ. A divisor D ∈ Div(Γ) is minimally alive (or, is a minimal alive divisor), if
it is alive but D − v is not alive for all v ∈ V (Γ).

The notion of an alive divisor is equivalent to that of being effective relative to
an ordering of V (Γ), as will be proved in Lemma 2.7. However, alive divisors more
naturally relate to the historically studied question of whether a divisor ever stabilizes,
and so we include its definition and the following results for completeness.

Lemma 2.7. Let Γ have sink s and fix D ∈ Div(Γ). Then the following are equivalent:

(1) D is alive.

(2) There exists a recurrent configuration c and an integer k ≥ ds such that D ∼ c+ ks.

(3) There exists an ordering S of V (Γ) and E ∼ D such that E is effective relative
to S.

Proof. [(1) =⇒ (2)]: Suppose D is alive. Stabilize D|Ṽ (Γ) to obtain a divisor D′.
Now s is unstable, i.e. D′

s ≥ ds, so we may fire s from D′ and then stabilize. If every
non-sink vertex fires in the stabilization, then D′|Ṽ (Γ) is recurrent by Theorem 1.6.
Otherwise, s is again unstable since D is alive, and we may repeat the process. By
Theorem 1.6, we obtain the desired result.

[(2) =⇒ (3)]: Suppose D ∼ E = ks + c for some recurrent configuration c and
k ≥ ds. By Theorem 1.6, after firing s from E, we may legally fire every other vertex
in turn, so E is effective relative to some vertex ordering v1, . . . , vn with s = v1.

[(3) =⇒ (1)]: Suppose E ∼ D is effective relative to some ordering S = v1, . . . , vn
of V (Γ). For any F ∼ D, let σ be the minimal effective script taking E to F . Let k
be minimal such that σvk = 0. Then vk can fire from F , so F is not stable, and thus
D is alive.

Not only do divisors effective relative to vertex orderings, alive divisors, and re-
current configurations coincide with each other, but their corresponding minimality
conditions also coincide. That is, D is minimally alive iff there exists an ordering S
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of V (Γ) such that D ∼ DS, iff there exists a minimal recurrent configuration c such
that D ∼ c + dss. Another consequence of the lemma is that for D ∈ Div(Γ) alive,
there exists E ∼ D with E effective.

The following Lemma 2.8 does not hold for Eulerian graphs generally. As a coun-
terexample, consider a directed cycle on three or more vertices. Since Theorem 2.15
entails the lemma, that theorem cannot hold in the directed case.

Assumption. Henceforth, Γ is taken to be undirected.

Lemma 2.8. Let D ∈ Div(Γ) be minimally alive. Then deg(D) = |E(Γ)|.

Proof. Let D be minimally alive, so that without loss of generality by Lemma 2.7,
we have D = DS for some ordering S = v1, . . . , vn of V (Γ). The result is immediate
when n = 1, so suppose that it holds for all graphs on n − 1 vertices. Let Γ′ be the
induced subgraph of Γ on V (Γ)\{v1}—without loss of generality, Γ′ is connected, since
otherwise by Lemma 2.2 we could choose a different v1. Observe that DS

v1
= dv1 , and

furthermore thatDS|Γ′ is the minimal effective divisor on Γ′ relative to S ′ = v2, . . . , vn.
Thus,

deg(DS) = dv1 + deg(DS|Γ′) = dv1 + |E(Γ′)| = |E(Γ)|,

and the lemma follows by induction on n.

The following is immediate from Lemmas 2.7 and 2.8:

Lemma 2.9. Let c be a minimal recurrent configuration on Γ. Then

deg(c) = |E(Γ)| − ds.

Hence, the minimal recurrent configurations are exactly the recurrent configura-
tions of minimal degree.

Definition 2.10 (Genus). For a graph Γ, the genus g of Γ is

g = |E(Γ)| − |V (Γ)|+ 1.

Definition 2.11 (Canonical divisor). The canonical divisor K of Γ is the divisor
Dmax −~1.

Definition 2.12 (Non-special divisor). For a graph Γ with genus g, define the set of
non-special divisors as

N = {D ∈ Div(Γ) : deg(D) = g − 1 and |D| = ∅}.

Theorem 2.13. Let Γ have sink s and fix D ∈ Div(Γ). Then the following are
equivalent:

(1) D ∈ N

(2) K −D ∈ N



13

(3) There exists a maximal superstable configuration c such that D ∼ c− s

(4) Dmax −D is minimally alive.

(5) |D| = ∅, and |D + v| 6= ∅ for all v ∈ V (Γ).

Proof. (3) and (4) are equivalent by Lemmas 1.9 and 2.7.

[(1) =⇒ (4)]: Suppose D ∈ N . Then for all E ∼ D, there is some v ∈ V (Γ) such
that Ev < 0, and so (Dmax − E)v ≥ dv, and Dmax −D is alive. Since

deg(Dmax −D) = 2|E(Γ)| − |V (Γ)| − g + 1 = |E(Γ)| − |V (Γ)| = |E(Γ)|,

Dmax −D is minimally alive by Lemma 2.8.

[(4) =⇒ (2)]: Suppose Dmax −D is minimally alive. Then for all E ∈ Dmax −D, by
Lemma 2.7 and Theorem 2.5, E does not have full support, so

|K −D| = |Dmax −D −~1| = ∅.

Since deg(K −D) = |E| − |V |, we have K −D ∈ N .

[(2) =⇒ (1)]: By the above, we have D ∈ N implies that K − D ∈ N . Hence,
K −D ∈ N implies that K − (K −D) ∈ N .

[(4) =⇒ (5)]: Let Dmax −D be minimally alive, so |D| = ∅ since (4) =⇒ (1). For
any v ∈ V (Γ), Dmax−D−v is not alive, so there is a stable divisor E ∼ Dmax−D−v,
and so

|D + v| = |Dmax − (Dmax −D − v)| = |Dmax − E| 6= ∅.

[(5) =⇒ (4)]: Suppose D satisfies (5). Then Dmax −D is alive by the argument in
(1) =⇒ (4). On the other hand, there is some E ∈ |D+v|, soDmax−E ∼ Dmax−D−v
is stable. Hence Dmax −D is minimally alive.

Definition 2.14 (r(D)). Define r(D) for D ∈ Div(Γ) by letting r(D) = −1 when
|D| = ∅, and otherwise

r(D) = min{k ∈ Z : ∃E ∈ Div(Γ) with deg(E) = k such that |D − E| = ∅} − 1.

In other words, |D| 6= ∅, r(D) + 1 is the minimal integer such that there exists
E ∈ Div(Γ) with deg(E) = r(D) + 1 such that |D − E| = ∅. Equivalently, r(D)
is the maximal integer such that for all E ∈ Div(Γ) with deg(D) = r(D), we have
|D − E| 6= ∅.

Theorem 2.15 (Riemann-Roch for Graphs). For D ∈ Div(Γ),

r(D)− r(K −D) = deg(D) + 1− g
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The following is given as Theorem 2.2 of (1).

Theorem 2.16. Theorem 2.15 holds iff the following two properties are satisfied:

(RR1) For every D ∈ Div(Γ), there exists ν ∈ N such that exactly one of |D| and
|ν −D| is empty.

(RR2) For every D ∈ Div(Γ) with deg(D) = g − 1, |D| and |K − D| are either both
empty or both non-empty.

Proof of Theorem 2.15. Let D be a divisor. If |D| 6= ∅, then E ∼ D is effective,
and certainly |ν − D| = ∅ since |ν| = ∅. If |D| = ∅, fix a sink s. By Theorem
1.5 and Theorem 1.9, there exists D′ ∼ D with D′|Ṽ (Γ) a superstable configuration.
Let c ≥ D′|Ṽ (Γ) be a maximal superstable configuration, and define ν = c − s. By
Theorem 2.13, we know that ν ∈ N , and ν − D′ ≥ 0 since D′

s < 0. Thus, (RR1)
holds. On the other hand, (RR2) simply restates the equivalence of (1) and (2) of
Theorem 2.13.



Chapter 3

Algebraic Graph Invariants

The fundamental graph invariant we study in this thesis is the homogeneous toppling
ideal, defined shortly hereafter. The inhomogeneous version of the ideal was first
defined in (2), and Proposition 4.8 of (11) states that our ideal is the homogenization
(with respect to a sink indeterminate) of the original. Translating between the two
ideals is generally straightforward. However, as we will see in Proposition 3.6, the
quotient by the homogeneous ideal has the advantage of being a graded module and
hence its minimal graded free resolution is unique up to isomorphism. This uniqueness
allows us to define the Betti numbers of the graph, which are the ranks of the free
modules of this minimal free resolution. We show in Theorem 3.10 that the last Betti
number is the number of minimal recurrent configurations, and conjecture that the
minimal free resolution can be written in terms of the connected partitions of Γ.

The homogeneous toppling ideal, its minimal free resolution, and its Betti num-
bers have all been defined previously in (11). (In fact, in that paper the free resolution
and Betti numbers are defined even for digraphs.) What is novel here are their com-
binatorial characterizations. Note that Betti numbers have been defined for graphs
previously in (7), but these correspond to a different ideal. Where confusion be-
tween the two sorts of Betti numbers is possible, we recommend referring to the Betti
numbers of this thesis as the toppling Betti numbers of the graph.

Assumption. R is the ring C[x1, . . . , xn].

For D ∈ Div(Γ), define

xD =
∏

v∈V (Γ)

xDv

v .

Definition 3.1 (Homogeneous toppling ideal). The homogeneous toppling ideal I(Γ)
for Γ is

I(Γ) = spanC{x
D − xE : D,E ∈ Div(Γ) such that D ∼ E and D,E ≥ ~0} ⊂ R.

Definition 3.2 (Grading). A ring S is graded by an abelian group A if there are
subgroups Sa ⊂ S for a ∈ A such that

S =
⊕

a∈A

Sa



16 Chapter 3. Algebraic Graph Invariants

as groups, and SaSb ⊂ Sa+b for a, b ∈ A. An element f ∈ S is homogeneous of degree
a if f ∈ Sa.

Proposition 3.3. R is graded by Cl(Γ).

Proof. Letting RD = spanC{x
E : E ∈ |D|}, we have the decomposition

R =
⊕

D∈Cl(Γ)

RD,

and for D1, D2 ∈ Div(Γ), we have xD1xD2 = xD1+D2 . Thus, RD1
RD2

⊂ RD1+D2
.

Definition 3.4 (Twist). For an abelian group A with a ∈ A, the ath twist of the
A-graded ring S is the ring S(a) equal to S but with grading given by S(a)b = Sa+b

for all b ∈ A.

A twist of a ring simply shifts its grading.

Definition 3.5 (Graded module). Let A be an abelian group, and let S be a ring
graded by A. A graded S-module is a module M with subgroups Ma for a ∈ A such
that

M =
⊕

a∈A

Ma

as groups, and SaMb ∈ Ma+b for a, b ∈ A. A graded free S-module is a module M
with nonnegative integers βa for a ∈ A such that

M =
⊕

a∈A

S(−a)βa .

(We use the twist S(−a) instead of S(a) when writing M because S(−a) is generated
by an element of S of degree a, i.e. an element of Sa.) A mapping φ : M → N of
graded free S-modules preserves degrees if φ(m) is homogeneous of degree a when m
is.

Proposition 3.6. The quotient S/I(Γ) is a graded R-module.

Proof. The proposition is obvious since I(Γ) is a homogeneous ideal, which is to say
it is generated by elements of the groups R[D].

Definition 3.7 (Exact sequence). A sequence of S-modules with maps

· · · F−1
oo F0

φ0
oo F1

φ1
oo · · ·oo

is exact at F0 if kerφ0 = imφ1. The sequence is exact if it is exact at each Fi.

Finally, we are equipped for the crucial definition of this chapter.
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Definition 3.8 (Free resolution). A free resolution F of an S-moduleM is a collection
of free S-modules Fi for i ≥ 0, with maps φi : Fi → Fi−1 for i ≥ 1 forming the exact
sequence

F : F0 F1
φ1

oo F2 · · ·
φ2

oooo Fn−1
φn−1
oo 0oo

such that M = cokerφ1. We say F is a graded free resolution if the Fi are graded
and the φi preserve degrees. When S = R, let P = 〈x1, . . . , xn〉 ⊂ R. The graded
free resolution is minimal if imφi ⊂ PFi−1 for all i.

Of course, minimal graded free resolutions can be defined in greater generality,
but for the purposes of this thesis, there is little benefit to the added complexity that
would be required. Note that minimal graded free resolutions of finitely-generated
R-modules exist. Letting M be such a module, we can construct a minimal graded
free resolution for M by building a free module F0 from a direct sum of copies of R,
with one copy for each element of a minimal generating set of M . We then repeat
the process, replacing M with the kernel of the map F0 → M . Hilbert’s syzygy
theorem (1.13 of (5)) guarantees that the existence of a graded free resolution of length
at most n for any finitely-generated R-module M , and so this process eventually
stops. Finally, Theorem 20.2 of (5) states that the minimal free resolutions of M are
isomorphic. The uniqueness of minimal graded free resolutions up to isomorphism
justifies the following definition.

Definition 3.9 (Betti numbers). Let

F : F0 F1
φ1

oo F2
φ1

oo · · ·oo Fn−1
φn−1
oo 0oo

be a minimal free resolution of M . If

Fi =
⊕

D∈Cl(Γ)

R(−D)βi,D

then βi,D(M) = βi,D is the ith Betti number ofM in degreeD. The ith coarsely-graded
Betti number βi(M) of M is

βi(M) =
∑

D∈Cl(Γ)

βi,D(M).

The Betti numbers of a module convey some of the same information as a free
resolution in a much more compact form. Henceforth, we will define the kth Betti
number βi,D(Γ) of Γ in degree D by βi,D(Γ) = βi,D(S/I(Γ)).

A central goal of this thesis is to relate our new algebraic descriptions of the
homogeneous toppling ideal to the graph and sandpile model whence it came. The
first step is the following.

Theorem 3.10. The (n − 1)th coarsely-graded Betti number of Γ is the number of
minimal recurrent configurations on Γ.
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A proof of the theorem will come shortly, but some additional machinery is needed.
Although the Betti numbers of an ideal are a simple numeric invariant, they are nev-
ertheless difficult to compute in general. Hochster’s formula (Theorem 3.16) relates
the Betti numbers of an ideal to the homology of associated simplicial complexes, and
these homologies are sometimes more convenient tools. We now give the essential def-
initions of simplicial homology so that we can state Hochster’s formula in advance of
the proof of Theorem 3.10. Our reference for the following is the first chapter of (9).

Definition 3.11 (Simplicial complex). A simplicial complex on the linearly ordered
set S is a collection ∆ of subsets of S closed under taking subsets. A face σ is a
set σ ∈ ∆, and a facet is a maximal face. A k-face σ is a face with |σ| = k + 1.

Observe that a simplicial complex is uniquely determined by its facets. One
usually thinks of a simplicial complex as a set of overlapping simplices embedded in
(|S| − 1)-dimensional Euclidean space. In our case, the simplicial complexes related
to I(Γ) are determined by the supports of the divisors in linear systems. (We will see
how the are related shortly.)

Definition 3.12 (∆D). For D ∈ Div(Γ), define ∆D as the simplicial complex V (Γ)
whose facets are the sets in {supp(E) : E ∈ |D|}.

Definition 3.13 (Boundary maps). For a simplicial complex ∆ on S, define Fi(∆)
as the set of i-faces of ∆, and C

Fi(∆) as the C-vector space with basis elements eσ for
σ ∈ Fi(∆). For i ≥ 0, the ith boundary map ∂i : C

Fi(∆) → C
Fi−1(∆) is defined by

∂i(eσ) =
∑

x∈σ

sign(x, σ)eσ\x

where sign(x, σ) = (−1)k for x the kth element of σ according to the linear order on S.

Thus, given an i-face σ, the vector ∂i(σ) is essentially a formal sum of the faces
bounding the i-dimensional simplex corresponding to σ.

Lemma 3.14. For i ≥ 0, we have ∂i+1∂i = 0.

The lemma is both standard and straightforward, so no proof will be given. It is
necessary so that the following is well-defined.

Definition 3.15 (Reduced homology). For a simplicial complex ∆, the kth reduced
homology H̃k(∆) of ∆ is

H̃k(∆) = ker ∂k/ im ∂k+1.

Intuitively, the ith reduced homology of a simplicial complex measures the number
of i-dimensional “holes” in the corresponding set of simplices embedded in Euclidean
space. Finally, we arrive at the needed theorem. Our version of this theorem is given
as Lemma 2.1 of (10).

Theorem 3.16 (Hochster’s Formula).

βk,D(Γ) = dimC H̃k−1(∆D).
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With Hochster’s formula in hand, we are equipped to prove Theorem 3.10.

Proof of Theorem 3.10. We wish to find βn−1(Γ), so by Hochster’s formula, we are
interested in counting the dimension of H̃n−2(∆D) as a C-vector space for D ∈ Cl(Γ).
Since ∆D is a simplicial complex on n vertices, the dimension of H̃n−2(∆D) is 1 when
∆D is an empty n-simplex and 0 otherwise, and so we may instead count the number
of divisor classes D with the following properties:

(i) No divisor E ∈ |D| has full support, and

(ii) For every v ∈ V (Γ), there exists Ev ∈ |D| with supp(Ev) = V (Γ) \ {v}.

Fix a sink s. Let c be a minimal recurrent configuration, so that by Theorem 1.6
for D = c+ dss, there is an ordering S of V (Γ) such that D = DS. By Theorem 2.5,
no E ∈ |D| has full support, so we have (i). For (ii), observe Ev is characterized by
Ev−~1+v ≥ ~0, so it suffices to show that r(D−~1+v) ≥ 0. Define F = Dmax−(D+v),
so that by Lemma 2.8,

deg(F ) = 2|E(Γ)| − |V (Γ)| − |E(Γ)| − 1 = g − 2.

By Theorem 2.15 we have r(F ) − r(K − F ) = −1. Now Dmax − (F + v) = D is
minimally alive, so F + v ∈ N by the equivalence of (4) and (1) of Theorem 2.13.
Thus, r(F ) = −1, and

0 = r(K − F ) = r(Dmax −~1− (Dmax −D − v)) = r(D −~1 + v).

It follows that ∆D has the desired homology.
To prove the other direction, let D be a divisor satisfying (i) and (ii) above. Then

r(D − ~1) = −1, but for every v ∈ V (Γ), r(D − ~1 + v) ≥ 0. Then by Theorem
2.13, we have F = D − ~1 ∈ N , so F ∼ c − s where c is a maximal superstable
configuration. Using Theorem 1.9, we have Dmax − F = dss + c̄ for some minimal
recurrent configuration c̄.

Thus, the divisor class of D satisfies (i) and (ii) iff its linear system contains a
divisor of the form dss+ c for c a minimal recurrent configuration.

The theorem now proved relates the minimum recurrent configurations on a graph
to its last Betti number. Our goal for the remainder of this chapter is to translate
that result to lower Betti numbers. To that end, we now define a graph determined by
a connected partition of Γ, and we will see in Theorem 3.18 that the minimum alive
divisors on these partition graphs are equivalent to the minimum effective divisors
on Γ relative to orderings of the partition.

Definition 3.17 (Partition graph). Fix P ∈ Pk(Γ). Define the partition graph ΓP

to be the multigraph with vertex set P and an edge ViVj ∈ E(ΓP ) with multiplicity
wtΓ(Vi, Vj) whenever there exists u ∈ Vi, v ∈ Vj such that u, v ∈ E(Γ). Partition
graphs come with projections πP : Div(Γ) → Div(ΓP ) defined by

(πP (D))Vi
=
∑

v∈Vi

Dv.
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Theorem 3.18. Fix P ∈ Pk(Γ) and let S be an ordering of P , so also S is an
ordering of V (ΓP ). Then πP (D

S) is the minimal effective divisor on ΓP relative to S.

Proof. Let S = V1, . . . , Vk and let E be the minimal effective divisor on ΓP relative
to S. By Lemma 2.4,

πP (D
S)Vi

=
∑

v∈Vi

∑

i<j≤k

wt(v, Vj)

=
∑

i<j≤k

∑

v∈Vi

wt(v, Vj)

=
∑

i<j≤k

wt(Vi, Vj)

= EVi
.

Definition 3.19 (S ∼ T ). For orderings S1 and S2 of P ∈ Pk(Γ), say S1 ∼ S2 if
DS1 ∼ DS2 .

Clearly the relation ∼ defined above gives an equivalence relation on Sk(Γ).

Theorem 3.20. Let S ∼ T , with S, T ∈ Sn(Γ). Then there is a sequence of vertex
orderings S = S1, S2, . . . , Sℓ = T such that Si ∼ Si−1 and Si is obtained from Si−1 for
i ≥ 2 either by a rotation or by transposing two adjacent vertices u, v ∈ Si−1, one of
which is unstable in DSi−1.

Proof. Fix a sink s. By Lemma 2.7, there is D ∼ DS ∼ DT such that D = ks+ c for
some recurrent configuration c and some k ≥ ds. By Theorem 1.6, after firing s, every
non-sink vertex will fire exactly once to stabilize the resulting configuration, and c
will again be obtained. Assume that at each step of this stabilization process, we have
fired the lexicographically first unstable vertex (recalling that V (Γ) = {1, . . . , n}) and
let Q be the ordering of V (Γ) corresponding to this firing, with s the first vertex of
Q. Thus, D = DQ, and it suffices to prove the theorem for T = Q.

Without loss of generality, s is the first vertex of S, since otherwise we may rotate
S. Suppose DS|Ṽ (Γ) is not recurrent. After firing s from DS, we may legally fire
every non-sink vertex once. However, by Theorem 1.6, this does not result in a stable
configuration, and so some non-sink vertex v of S is unstable. If S ′ is the sequence
of vertex firings obtained by transposing v with the vertex preceding it in S, then
DS = DS′

by Lemma 2.4. Let S ′ be obtained from S by bringing v to the front
of the ordering, so DS = DS′

. Let S̃ be obtained by rotating S ′ so that s is again
the first vertex, and v is the last. Observe that DS̃ is obtained from DS′

by firing
v, so that DS̃ ∼ DS′

. By repeating this procedure, we may fire unstable non-sink
vertices until we obtain a stable configuration c, and Theorem 1.6 guarantees that
this configuration is recurrent. By Theorem 1.5, in fact c = DT |Ṽ (Γ). Thus, it suffices

to prove the theorem when S is such that DS = DT .
If DS = DT with DT |Ṽ (Γ) recurrent, but S 6= T , it must be that at some point

while stabilizing after firing s from DS, we have a choice of two unstable vertices to
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fire. In fact, by the characterization of Q = T already given, it must be that in firing
S, we have not always fired the lexicographically first vertex when we have a choice of
unstable vertices. Thus, by performing a series of rotations on S, we eventually obtain
a new ordering S̃ such that two vertices of DS̃ are unstable, but the lexicographically
first unstable vertex v comes later in S̃. We have already seen that we may move
that v to the front of S̃ to obtain a new ordering S ′ with DS′

= DS̃. By repeating
this process, we eventually obtain T , and the proof is complete.

Corollary 3.21. Fix P ∈ Pk(Γ) and let S1 and S2 be orderings of P . Then if
DS1

ΓP
∼ DS2

ΓP
, also DS1

Γ ∼ DS2

Γ .

Proof. By Theorem 3.20, it suffices to prove the result when S2 is obtained from S1 by
either a rotation or swapping two adjacent sets U, V ∈ S1 with V appearing second,
and the vertex V ∈ V (ΓP ) unstable in DS1

ΓP
. If S2 is obtained from S1, then of course

both DS1

ΓP
∼ DS2

ΓP
and DS1

Γ ∼ DS2

Γ . On the other hand, if V can be legally fired from

DS1

ΓP
, by examining degrees, using minimality, and invoking Lemma 3.18, it follows

that χV can be legally fired from DS1

ΓP
. In that case, DS1

Γ = DS2

Γ .

Corollary 3.22. Let S ∼ T , with S, T ∈ Sk(Γ). Then there is a sequence of vertex
orderings S = S1, S2, . . . , Sℓ = T such that Si ∼ Si−1 and Si is obtained from Si−1 for
i ≥ 2 either by a rotation or by transposing two adjacent sets U, V ∈ Si−1 such that
one of {χU , χV } is a legal firing from DSi−1.

Proof. Let P ∈ Pk(Γ) be the partition corresponding to S. By Lemma 3.18, the
divisor πP (D

S) is the minimum effective divisor relative to the ordering S of the
vertices of ΓP . Now, if D

S1

ΓP
∼ DS2

ΓP
for some orderings S1 and S2 of P , also DS1

Γ ∼ DS2

Γ

by Lemma 3.21. Thus, it suffices to prove the corollary for S an ordering of the vertices
of a graph, and so the result follows from Theorem 3.20.

Corollary 3.23. Fix P ∈ Pk(Γ) and let S1 and S2 be orderings of P . Then DS1

ΓP
∼

DS2

ΓP
iff DS1

Γ ∼ DS2

Γ .

Proof. One direction is already given by Corollary 3.21. For the other direction, when
DS1

Γ ∼ DS2

Γ , we may assume by Corollary 3.22 that S2 is obtained from S1 by either a
rotation or by swapping two adjacent sets U, V ∈ S1, the latter of which, V , may be
legally fired from DS1 . In the former case, certainly DS1

ΓP
∼ DS2

ΓP
. In the latter case,

vertex V of ΓP is unstable in DS1

ΓP
, and so DS1

ΓP
= DS2

ΓP
.

In order to relate the lower Betti numbers to the higher, we must relate the coarser
partitions of Γ to the finer.

Definition 3.24 (Ordered refinement). Let T = V1, . . . , Vk ∈ Sk(Γ). If there exists
S ∈ Sk−1(Γ) such that S = V1 ∪ V2, V3, . . . Vk, we say T is an ordered refinement of S,
and write T > S.

Observe that T = V1, . . . , Vk ∈ Sk(Γ) is the ordered refinement of some S iff there
exists u ∈ V1 and v ∈ V2 such that uv ∈ E(Γ). Furthermore, if T is an ordered
refinement, the S such that S < T is uniquely determined.
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Lemma 3.25. Fix T = V1, . . . , Vk ∈ Sk(Γ) such that T has an ordered refinement S.
Then

DT −DS =
∑

v∈V1

wt(v, V2)v 6= ~0

Proof. The expression for DT −DS is immediate from Lemma 2.4. Certainly we have
DT −DS ≥ ~0, and that the divisor is not equal to ~0 follows from the fact that V1∪V2

is connected.

We define the set of ordered connected k-partition classes by CSk(Γ) = Sk(Γ)/ ∼.
We will henceforth assume that every C ∈ CSk(Γ) is endowed with a fixed represen-
tative element SC ∈ C—the lexicographically least element is a natural choice. For
S ∈ C, if τ is the permutation taking S to SC , we define sign(S) = sign(τ).

For 0 ≤ k ≤ n− 1, define the kth Cl(Γ)-graded free module of Γ by

Fk(Γ) =
⊕

C∈CSk+1(Γ)

R(−DSC ).

Let eC be the identity element in R(−DSC ). For 1 ≤ k ≤ n− 1, the free modules
of Γ come with homomorphisms φ̄k : Fk(Γ) → Fk−1(Γ) defined by

φk(eC) =
∑

T∈C
∃S<T

sign(S) sign(T )xDT−DS

e[S].

We obtain new homomorphisms φk from the φ̄k by normalizing the coefficients, i.e.
for φ̄k(eC) = a1m1 + · · · + aℓmℓ for distinct monomials m1, . . . ,mℓ and non-zero
a1, . . . , aℓ ∈ Z, we define

φk(eC) =
a1
|a1|

m1 + · · ·+
aℓ
|aℓ|

mℓ.

Proposition 3.26. The map φk preserves degrees.

Proof. For any term f of the polynomial in the [S] component of φk(e[T ]), there exists

T̃ ∼ T and S̃ ∼ S such that f = λxDT̃−DS̃

for some λ ∈ C. Then f ∈ RDT−DS . Thus,
since e[S] ∈ RDS , the [S] component of φk(e[T ]) lies in

RDT−DSRDS = RDT .

It follows that φk preserves degrees.

Remark 3.27. For T ∈ Sk(Γ) with S < T , the [S] component of φk(e[T ]) has at most

two terms. This is because for any S̃ ∼ S and T̃ ∼ T with S̃ < T̃ , the first set in
S̃ agrees with the first set in S, and so we have at most two choices for the first two
sets of T̃ .

Conjecture 3.28. Let Fi = Fi(Γ) for 0 ≤ i ≤ n− 1. The sequence

F(Γ) : F0 F1
φ1

oo F2
φ2

oo · · ·oo Fn−1
φn−1
oo 0oo

is a minimal graded free resolution of S/I(Γ).
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Although a complete proof remains elusive, a partial proof is given below. We
show that (i) cokerφ1 = S/I(Γ), (ii) for every k we have imφk ⊆ kerφk−1, and (iii) if
the sequence is a free resolution, it is minimal. Thus, all that remains in order to
prove the conjecture is that kerφk−1 ⊆ imφk for all k.

Note. After the deadline for substantive edits to theses had passed, it was noticed
that the definition for φk was incorrect. The original version of the mapping is given
in this revision as φ̄k, and the corrected version as φk. However, the original definition
of φk is retained in the following partial proof. The difference is relevant only in Case
(1) of the proof that imφk ⊆ kerφk−1. A completed and corrected proof will appear
elsewhere.

Partial proof of Conjecture 3.28. We first show that imφk ⊆ kerφk−1 for all k ≥ 2.
For given k, fix C ∈ CSk(Γ). We have

φk−1(φk(eC)) = φk−1







∑

T∈C
∃S<T

sign(S) sign(T )xDT−DS

e[S]







=
∑

T∈C
∃S<T

∑

S′∈[S]
∃Q<S′

sign(Q) sign(S ′) sign(S) sign(T )xDT−DS

xDS′

−DQ

e[Q].

Suppose Q < S ′ ∼ S < T as in each summand. Two scenarios are possible: either (1)
there are distinct vertex sets Vx, Vy, Vz ∈ T such that Vx∪Vy∪Vz ∈ Q, or (2) there are
distinct vertex sets Vx1

, Vx2
, Vy1 , Vy2 ∈ T such that Vx1

∪ Vx2
∈ Q and Vy1 ∪ Vy2 ∈ Q.

In case (2), without loss of generality we have

Q = V1 ∪ V2, V3, . . . , Vℓ−1, Vℓ ∪ Vℓ+1, Vℓ+2, . . . , Vk

and
T = Vℓ, Vℓ+1 . . . , Vk, V1, V2, . . . , Vℓ−1.

In addition, we have S ′
1 > Q given by

S ′
1 = V1, V2, V3, . . . , Vℓ−1, Vℓ ∪ Vℓ+1, Vℓ+2, . . . , Vk

and S1 < T given by

S1 = Vℓ ∪ Vℓ+1, Vℓ+2 . . . , Vk, V1, V2, . . . , Vℓ−1.

Since S1 is obtained from S ′
1 by a rotation of its sets, by Lemma 2.2 we have S1 ∼ S ′

1.
Now similarly define T̃ ∼ T by T̃ = V1, . . . , Vk, and

S2 = V1 ∪ V2, V3, . . . , Vk

S ′
2 = Vℓ, Vℓ+1, . . . , Vk, V1 ∪ V2, V3, . . . , Vℓ−1

Q̃ = Vℓ ∪ Vℓ+1, Vℓ+2 . . . , Vk, V1 ∪ V2, V3, . . . , Vℓ−1.
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Again, Q̃ is obtained from Q by rotation, so Q̃ ∈ [Q]. Observe that

DT −DS1 +DS′

1 −DQ =
∑

v∈Vℓ

wt(v, Vℓ+1)v +
∑

v∈V1

wt(v, V2)v

= DT̃ −DS2 +DS′

2 −DQ̃

by Lemma 3.25.
Recall that the permutation τ that rotates an ordered set of k elements has sign

(−1)k+1. Thus, we may combine two terms in the above sum to obtain the summand

sign(Q) sign(S ′
1) sign(S1) sign(T )x

DT−DS1xDS′

1−DQ

e[Q]

+ sign(Q̃) sign(S ′
2) sign(S2) sign(T̃ )x

DT̃−DS2xDS′

2−DQ̃

e[Q̃]

= (−1)(ℓ−1)k sign(Q) (sign (S1))
2 sign(T )xDT−DS1+DS′

1−DQ

e[Q]

+ (−1)(ℓ−2)k sign(Q̃) (sign (S2))
2 sign(T̃ )xDT−DS1+DS′

1−DQ

e[Q]

= (−1)(ℓ−1)k sign(Q) sign(T )xDT−DS1+DS′

1−DQ

e[Q]

+ (−1)(ℓ−2)k(−1)(ℓ−2)(k−1)(−1)(ℓ−1)(k+1) sign(Q) sign(T )xDT−DS1+DS′

1−DQ

e[Q]

=
(

(−1)ℓk+ℓ + (−1)ℓk+k+1
)

sign(Q) sign(T )xDT−DS1+DS′

1−DQ

e[Q]

= 0.

Case (1) requires no additional ideas but is equally tedious, so it is omitted. We now
have φk−1 ◦ φk = 0.

To see that S/I(Γ) = cokerφ1, we must show that imφ1 = I(Γ). First, note that
F0 = R since CS1(Γ) = {[V (Γ)]} and DV (Γ) = ~0, so it is reasonable that imφ1 = I(Γ).
Now let vertex n be a sink, so xn ∈ R is the corresponding indeterminate. For
P = V1, V2 ∈ P2(Γ), define the polynomials

fP =
∏

v∈V1\{s}

xwt(v,V2)
v −

∏

v∈V2\{s}

xwt(v,V1)
v

and
f̃P =

∏

v∈V1

xwt(v,V2)
v −

∏

v∈V2

xwt(v,V1)
v .

Let G = {fP : P ∈ P2(Γ)} and G̃ = {f̃P : P ∈ P2(Γ)}. Thus G̃ is the set of polyno-
mials in G homogenized with respect to xn. Observe that for orderings S1 = V1, V2

and S2 = V2, V1 of P , we have

f̃P = xDS1 − xDS2 ∈ I(Γ).

In fact, choosing S1 as the representative of C = [S1], we have

f̃P = xDS1 − xDS2 =
∑

T∈C
V (Γ)<T

sign(T )xDT

eR = φ1(eC)
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and so G̃ ⊂ imφ1. We claim that G̃ is a Gröbner basis for I(Γ).
Theorem 3 of (2) states that G is a minimal Gröbner basis for the inhomogeneous

version of I(Γ) with respect to graded reverse lexicographic order (grevlex ). (In fact,
Theorem 3 uses G̃ and the additional polynomial xn − 1, but the statement is equiv-
alent.) Recall that a Gröbner basis H for an ideal J is characterized by the property
that the ideal IJ given by leading terms of polynomials in J is generated by the
leading terms of polynomials in H. Using grevlex, no leading term of the polynomials
in I(Γ) or G̃ contains xn, so the leading terms of I(Γ) and its inhomogeneous version
are the same, as are the leading terms of G and G̃. Thus indeed G̃ is a Gröbner basis
for I(Γ), and we conclude that cokerφ1 = S/I(Γ).

The minimality of F(Γ) is immediate since for S < T we have DT −DS 6= 0 by
Lemma 3.25, and it follows that the [S] term of φk(e[T ]) is not a nonzero scalar.

Finally, we have the following corollary to Conjecture 3.28, which generalizes
Theorem 3.10.

Corollary 3.29. Let Γ have a sink. Then

βk(IΓ) =
∑

P∈Pk+1(Γ)

|{c : c is a minimal recurrent sandpile on ΓP}| .

Proof. Using, in order, Conjecture 3.28, Corollary 3.23, Lemma 3.18, and Lemma 2.7,
we have

βk(IΓ) = |CSk+1(Γ)|

=
∑

P∈Pk+1(Γ)

|{[S] ∈ CSk+1(Γ) : S an ordering of P}|

=
∑

P∈Pk+1(Γ)

∣

∣

{

[DS] ∈ Cl(Γ) : S an ordering of P
}∣

∣

=
∑

P∈Pk+1(Γ)

∣

∣

{

[πP (D
S)] ∈ Cl(ΓP ) : S an ordering of P

}∣

∣

=
∑

P∈Pk+1(Γ)

∣

∣

{

[DS] ∈ Cl(ΓP ) : S an ordering of V (ΓP )
}∣

∣

=
∑

P∈Pk+1(Γ)

|{c : c is a minimal recurrent sandpile on ΓP}| .

Observe that in fact Theorem 3.10 is a special case.





Chapter 4

Computation and Applications

In this chapter, we examine a few corollaries to Conjecture 3.28, and so every proof
will assume that the conjecture holds. We compute the coarse Betti numbers for
trees and complete graphs, and discuss how the coarse Betti numbers of a graph are
affected when edges are added. As a result, we obtain tight bounds for the coarse
Betti numbers of undirected graphs.

Lemma 4.1. Let Γ be a tree. If D,E ∈ Div(Γ) are such that deg(D) = deg(E), then
D ∼ E.

Proof. Fix a sink s. Note that if D is not effective, by repeatedly firing the sink
and stabilizing, we obtain a divisor D′ that is effective away from the sink. Thus,
by Theorem 1.8, since D and E have the same degree, it suffices to show that both
divisors superstabilize to the same configuration. We claim that the only superstable
configuration on Γ is ~0.

Suppose c is a superstable configuration that has cv > 0 for some vertex v. Since
Γ is a tree, there is a unique path v1, . . . , vk from v1 = v to vk = s. Let Γ1, . . . ,Γt be
the components of Γ \ {v} that do not contain v2. Since Γ is a tree, each neighbor of
v other than v2 is a vertex of a unique component Γi. Define

X = {v} ∪
⋃

1≤i≤t

V (Γi).

Since v2 is not an element of X, neither is s, so X is a subset of Ṽ (Γ). We claim that
X is a legal firing. For u ∈ X, if u 6= v, then every neighbor of u is also in X, so the
firing is legal at u. On the other hand, every neighbor of v except for v2 is in X, and
cv > 0, so the firing is legal at v as well. It follows that X is a legal firing, and so c
is not superstable.

Theorem 4.2. Let Γ be a tree on n vertices. Then βk(Γ) =
(

n−1
k+1

)

.

Proof. Γ has only one minimal recurrent configuration by Lemma 4.1. Furthermore,
for P ∈ Pk+2(Γ), also ΓP is a tree and so has only one minimal recurrent configuration.
Thus, by Corollary 3.29, we have

βk(Γ) = |Pk+2(Γ)|.
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Let Ek be the collection of subsets of E(Γ) of cardinality k. Define g : Pk(Γ) → En−k

by
g(P ) = {vw ∈ E(Γ) : ∃U ∈ P such that v, w ∈ U},

i.e. g(P ) is the set of edges that are contained within a vertex set of P . It is
straightforward to verify that g is a bijection. Since |E(Γ)| = n − 1, it follows
that βk =

(

n−1
n−k−2

)

=
(

n−1
k+1

)

.

Theorem 4.3. Let Γ have an edge uv and let Γ′ be obtained from Γ by changing the
multiplicity of uv to a different positive value. Then βk(Γ) = βk(Γ

′).

Proof. Fix k. Certainly Pk+2(Γ) = Pk+2(Γ
′) since the connected vertex sets of Γ and

Γ′ are identical. Furthermore, for P ∈ Pk+2(Γ), the partition graphs ΓP and Γ′
P differ

only by the multiplicity of an edge, if they differ at all. Thus, letting s = u be a
sink, it suffices by Corollary 3.29 to show that Γ and Γ′ have the same number of
minimal recurrent configurations. We claim that the minimal recurrent configurations
are identical.

By Theorem 1.6, a configuration c is minimally recurrent iff there exists an order-
ing S of the vertices such that DS = dss+c, with s the first vertex of S and DS stable
away from s. On the other hand, for S ∈ Sn(Γ) with s the first vertex of S, we have
DS = dss+ c for some recurrent configuration c iff every non-sink vertex is stable in
DS. Let r be such that wtΓ(s, v) = wtΓ′(s, v) + r. We claim that for vertex orderings
S with s the first vertex, we have DS

Γ = DS
Γ′ + rs with DS

Γ stable on the non-sink
vertices iff DS

Γ′ + rs is. This entails that the minimal recurrent configurations on Γ
and Γ′ are identical.

Let S = v1, . . . , vn be an ordering of V (Γ) with s = v1. By Lemma 2.4, for i > 1
we have

(DS
Γ)vi =

∑

i<j≤k

wtΓ(vi, vj) =
∑

i<j≤k

wtΓ′(vi, vj) = (DS
Γ′)vi ,

and also

(DS
Γ)s =

∑

1<j≤k

wtΓ(s, vj)

= wtΓ′(s, v) + r +
∑

1<j≤k
vj 6=v

wtΓ′(s, vj)

= r +
∑

1<j≤k

wtΓ′(s, vj)

= (DS
Γ′)s + r.

Finally, we need to check that DS
Γ is stable away from the sink iff DS

Γ′ is. It suffices
to check the condition at v. Suppose r > 0. Then certainly if v is stable for DS

Γ , also
v is stable for DS

Γ′ . On the other hand, if v is stable for DS
Γ with v = vi,

(DS
Γ)v =

∑

i<j≤k

wtΓ(v, vj) ≤ dΓ′(v)− (r + 1)
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since s comes before v in S and wt(s, v) ≥ r + 1. Since dΓ(v) = dΓ′(v) − r, also
(DS

Γ)v ≤ dΓ(v)−1. The case when r < 0 is symmetric, and the proof is complete.

Theorem 4.4. Let Γ′ be obtained from Γ by adding an edge uv. Then βk(Γ) ≤ βk(Γ
′).

Proof. The situation here is almost identical to that of Theorem 4.3. Again fix k.
If P ∈ Pk+2(Γ), then also P ∈ Pk+2(Γ

′) since a connected vertex set of Γ is also
connected in Γ′. Furthermore, for P ∈ Pk+2(Γ), the partition graphs ΓP and Γ′

P differ
only by the presence of an additional edge, if they differ at all. Thus, letting s = u
be a sink, by Corollary 3.29 it suffices to show that Γ has no more minimal recurrent
configurations than Γ′. In fact, we claim that any minimal recurrent configuration
of Γ is also a minimal recurrent configuration of Γ′. Using the same argument as
in the proof of Theorem 4.3, it suffices to show that for any ordering S with s the
first vertex and DS

Γ stable away from s, we have DS
Γ′ = DS

Γ + s and DS
Γ′ stable away

from s. Again, an identical argument to that in the proof of Theorem 4.3 shows that
DS

Γ′ = DS
Γ + s, and it still holds that for vi 6= s and (DS

Γ)vi < dΓ(vi) we have

(DS
Γ′)vi = (DS

Γ)vi < dΓ(vi) ≤ dΓ′(vi).

The proof is complete.

Definition 4.5 (Chain of sets). Given a set A, an ascending chain of length k of
subsets of A is a sequence S1 ⊆ S2 ⊆ · · · ⊆ Sk, where Si ⊆ A for 1 ≤ i ≤ k. The
chain is strictly ascending if each containment Si ⊂ Si+1 is proper.

Theorem 4.6. Let Γ = Kn with n ≥ 2. Then βk(Γ) is the number of strictly
ascending chains of length k of non-empty subsets of A = {1, . . . , n− 1}.

Proof. Let X be the set of strictly ascending chains of length k of non-empty subsets
of A = {1, . . . , n− 1}. Define the map g : X → CSk+1(Γ) by

g(S1 ⊆ · · · ⊆ Sk+1) = [S1, S2 \ S1, S3 \ S2, . . . , Sk+1 \ Sk, V (Γ) \ Sk].

Observe that for P ∈ Pk(Γ), also ΓP is a complete graph, though possibly with edges
of higher multiplicity. By Theorem 4.3, we can ignore the multiplicity of the edges.
Thus, by Corollary 3.29, it suffices to show that g is a bijection when k = n− 1.

Given C ∈ CSn(Γ), use Lemma 2.2 to choose T = v1, . . . , vn ∈ C so that vn = n.
Define Si = ∪j≤ivi for 1 ≤ i ≤ n− 2. Then S1 ⊆ · · · ⊆ Sn−1 is a chain in X, and

g(S1 ⊆ · · · ⊆ Sn−1) = C,

so g is surjective.
To show that g is injective, we first prove that for S = v1, . . . , vn ∈ Sn(Γ) and σ

a legal set firing from DS, there exists 1 ≤ ℓ ≤ n such that σ =
∑ℓ

i=1 vi. By Lemma
2.4,

DS
vi
=
∑

i<j≤k

wtΓ(vi, vj) = |{vj ∈ V (Γ) : i < j}|.
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Let deg(σ) = ℓ. Since Γ is complete, when σ fires, each vertex in σ loses n− ℓ grains
of sand. Thus, the only vertices that can fire, by the characterization above, are those
vertices vi with i ≤ ℓ, and hence σ =

∑ℓ

i=1 vi. In other words, firing σ simply rotates
S by Lemma 2.2. By Proposition 1.3, any script can be written as a sequence of
set firings, and a simple induction shows that each of these set firings is in fact just
a rotation of S. Thus, there is a unique element u1, . . . , un of [S] with n = un. It
follows that g is injective, and the proof is complete.

In particular, for n ≥ 2 we have β1(Kn) = 2(n− 1)− 1 and βn−1(Kn) = (n− 1)!.
The number βk+1(Kn+2) gives the T (n, k) term of sequence A053440 of the On-Line
Encyclopedia of Integer Sequences (12).

Remark 4.7. The combination of Theorems 4.2, 4.3, 4.4, and 4.6 gives tight upper
and lower bounds for the coarse Betti numbers of undirected graphs.



Appendix A

Elementary Graph Theory

A graph Γ is a tuple (V,E) where V is an arbitrary set, called the vertices, and E
is a collection of unordered pairs {u, v} of distinct elements of V , called the edges.
Intuitively, a graph is a network of nodes (the vertices), some pairs of which are
connected in an undirected fashion (the edges). We will write V (Γ) for the set of
vertices of Γ and E(Γ) for the set of edges. Instead of writing the edge {u, v} ∈
E(Γ) as an ordinary set, we will normally use the more concise notation uv ∈ E(Γ).
If we permitted edges of the form vv for v ∈ V (Γ), such edges would be called
loops. Loops are ignored in this thesis because they are occasionally a nuisance,
and contribute nothing to the theory. A multigraph is a graph Γ whose edge set
E(Γ) is a multiset. The degree dv of a vertex v is the number of edges in which v
participates, dv = |{vw ∈ E(Γ) : w ∈ V (Γ)}|.

Theorem A.1.
∑

v∈V (Γ)

dv = 2|E(Γ)|.

A directed graph (or digraph) Γ is a graph whose edge set consists of ordered
pairs of vertices. Intuitively, a digraph is a network with unidirectional connections
between nodes. We use the notation uv ∈ E(Γ) to denote the edge from u to v.
The in-degree of a vertex v is given by indeg(v) = |{uv ∈ E(Γ)}|, and the out-

degree is given by outdeg(v) = |{vw ∈ E(Γ)}|. Every directed graph Γ has a
corresponding undirected graph whose vertex set is V (Γ) and whose edges set is E(Γ)
with the ordering ignored. Similarly, every undirected graph Γ can be thought of as
the digraph on V (Γ) with edges uv and vu for every {u, v} ∈ E(Γ).

We define wt(v, w) = |{vw ∈ E(Γ)}| for v, w ∈ V (Γ). For X, Y ⊆ V (Γ), we
define wt(X, Y ) =

∑

x∈X

∑

y∈Y wt(x, y), and for x, y ∈ V (Γ) we use the shorthand
wt(x, Y ) = wt({x}, Y ) and wt(X, y) = wt(X, {y}).

A walk on a graph is a sequence of vertices v1, . . . , vn such that vivi+1 ∈ E(Γ). A
directed walk is defined identically on digraphs. A path is a walk with no repeated
vertices—if a walk exists between distinct u and v, then so does a path. A closed

walk is a walk v1, . . . , vn such that v1 = vn. A cycle is a closed walk on at least
three distinct vertices whose only repeated vertices are the first and last. Directed
paths, closed directed walks, and directed cycles are defined for digraphs by replacing
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the word “walk” with “directed walk” in the corresponding definition for undirected
graphs. An Euler walk is a closed walk that traverses every edge exactly once.

An (undirected) graph is connected if for every pair u, v ∈ V (Γ), there is a path
from u to v. A tree is a connected undirected graph with no cycles and no edges
of multiplicity greater than 1. A directed tree is an undirected tree with a single
orientation chosen for each edge.

Theorem A.2. A tree on n vertices has n− 1 edges.

A digraph is weakly connected if the corresponding undirected graph (the graph
whose edges are the edges of the digraph with their ordering ignored) is connected, and
it is strongly connected if for every pair u, v ∈ V (Γ), there is a directed path from u
to v. A digraph Γ is Eulerian if it is weakly connected and if indeg u = outdeg u for
every u ∈ V (Γ).

Example A.3. Every connected undirected graph is Eulerian. (It is common else-
where to define undirected Eulerian graphs as those with even degree, in which case
there would certainly be non-Eulerian undirected graphs.)

Theorem A.4. If Γ is Eulerian, it has an Euler walk.

Corollary A.5. If Γ is Eulerian, it is strongly connected.

Two graphs Γ1 and Γ2 are isomorphic if there exists a map f : V (Γ1) → V (Γ2)
such that uv ∈ E(Γ1) iff f(u)f(v) ∈ E(Γ2). For any graph Γ, only the cardinality of
V (Γ) matters, not the actual elements: replacing the elements of V (Γ) while leaving
E(Γ) intact simply creates an isomorphic graph.

For a positive integer n, the complete graph on n vertices is the undirected
graph Kn whose vertex set is {1, . . . , n} and whose edge set is

E(Kn) = {ij : i 6= j ∈ V (Kn)}.

For n ≥ 3, we define the cycle graph on n vertices as the undirected graph Cn with
V (Cn) = {1, . . . , n} and

E(Cn) = {{1, 2}, {2, 3}, . . . , {n− 1, n}, {n, 1}}.

The reader is referred to (4) for a thorough treatment of the subject.
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