Expected Shortfall (ES)
Reminders on conditional expectations
Expected shortfall
Expected shortfall with bonds
Advantages and disadvantages
Reminders on conditional expectations

- Expected shortfall
- Expected shortfall with bonds
- Advantages and disadvantages

Reminders on conditional expectations
\[E(X) = \sum_{i=1}^{T} p_i x_i \]

(4.3.1)

\[A = \{ i \mid x_i < z \} \]

(4.3.2)

\[E(X \mid X < z) = \frac{\sum_{i \in A} p_i x_i}{\sum_{i \in A} p_i} \]

(4.3.3)
Continuous random variables

\[E(X) = \int_{-\infty}^{\infty} x f_x(x) \, dx \quad (4.3.4) \]

\[p = \Pr(X \leq z) = \int_{-\infty}^{z} f_x(x) \, dx \quad (4.3.5) \]

\[E(X|X \leq z) = \frac{1}{p} \int_{-\infty}^{z} x f_x(x) \, dx \quad (4.3.6) \]
Expected shortfall

Reminders on conditional expectations

Expected shortfall

Expected shortfall with bonds

Advantages and disadvantages
Expected shortfall: Expected loss given that VaR loss is exceeded.

- More information on left tail
- Also, known as,
 - Expected tail loss (ETL)
 - Conditional Value-at-Risk (CVaR)
For a continuously distributed loss

\[ES(p) = -E(Q | Q \leq -\text{VaR}(p)) \] \hspace{1cm} (4.3.7)

\[p = \int_{-\infty}^{-\text{VaR}(p)} f_q(x) \, dx \] \hspace{1cm} (4.3.8)

\[ES = -E(Q | Q \leq -\text{VaR}(p)) = -\frac{1}{p} \int_{-\infty}^{-\text{VaR}(p)} x f_q(x) \, dx \] \hspace{1cm} (4.3.9)
A quick formula

• For certain restricted portfolios expected shortfall can be calculated with tables.
• Assume P/L is normal, mean 0, std 1
• \(\phi(x) \) is normal density, \(\Phi(x) \) is normal CDF

\[
ES = \frac{\phi(\Phi^{-1}(p))}{p}
\]

(4.3.10)

See Daníelson, 5.3.4 for a derivation.
set tail probs
p = np.array([0.5, 0.1, 0.05, 0.025, 0.01])
find VaR with inverse CDF
VaR = -stats.norm.ppf(p)
Now ES with fancy formula
ES = stats.norm.pdf(stats.norm.ppf(p))/p
These are for the example above with a normal distribution, mean zero, and std. of 1.

<table>
<thead>
<tr>
<th>p</th>
<th>VaR</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.282</td>
<td>1.755</td>
</tr>
<tr>
<td>0.05</td>
<td>1.645</td>
<td>2.063</td>
</tr>
<tr>
<td>0.01</td>
<td>2.326</td>
<td>2.665</td>
</tr>
<tr>
<td>0.001</td>
<td>3.090</td>
<td>3.367</td>
</tr>
</tbody>
</table>

This seems similar, but what about other distributions? *We will get to this soon.*
Expected shortfall with bonds
Return to bond example

- **Bond**
 - 1 year maturity
 - Principal = 100 = purchase price
 - Interest = 5%
 - No default: pays 105

- **Default probability** = 0.0125

- If there is a default, bond returns \([0, 100]\) uniform (recovery)
Default density and $\text{VaR}(0.01)$

\[100 \times 1.25 \times 10^{-4} = 0.0125 \quad 80 \times 1.25 \times 10^{-4} = 0.01 \]
What is the expected shortfall?

- $ES(0.01)$ is the expected loss conditional on going past the 0.01 VaR level.
- Range of bond values: Uniform $[0, 80]$
- Expected value $= 40$
- Expected loss $= 40 - \text{Principal} = 40 - 100 = -60$
- Expected shortfall $= -(\text{Expected loss}) = 60$

\[
ES = -\left[\frac{1}{p} \int_{0}^{80} xf(x)dx - 100\right], \quad f(x) = 1.25 \times 10^{-4}, \quad p = 0.01
\] (4.3.11)

or more formally,

\[
ES = \frac{-1}{p} \int_{-100}^{-20} xf(x)dx, \quad f(x) = 1.25 \times 10^{-4}, \quad p = 0.01
\] (4.3.12)
Can our sneaky trader manipulate ES?

Return to single bond example with insurance

- Investor holds single bond as defined before
- Investor sells insurance on bond defaults to others
- Only insure in states where recovery is less than 80 (of 100)
- Pay out to take other investor back to 80 in all these states
Implementing the strategy

- **Sell** insurance on all losses beyond 20
- **What happens**

 1. No default: earn insurance premium with no default, $105 + x$

 2. Default (> 80): Loss less than 20, no change

 3. Default (< 80): All defaults recovering less than 80 trigger insurance payments

 \Rightarrow Investor receives: $X - (80 - X) = 2X - 80$

 Portfolio values change: $80 \rightarrow 80$, $0 \rightarrow -80$, **range** = $[80, -80]$

 \Rightarrow What is the loss in this range? $-[80 - 100, -80 - 100] = [20, 180]$

 \Rightarrow Previously it was: $-[80 - 100, 0 - 100] = [20, 100]$
The strategy in a picture

Before insurance

After insurance
What is the expected shortfall now?

- \(\text{ES}(0.01) \) is the expected loss conditional on going past the 0.01 VaR level.
- Range of portfolio values: Uniform \([-80, 80]\)
- Expected value = 0
- Expected loss = \(0 - \text{Principal} = 0 - 100 = -100\)
- Expected shortfall = -(Expected loss) = 100

\[
\text{ES} = -\left[\frac{1}{p} \int_{-80}^{80} x f(x) dx - 100 \right], \quad f(x) = (1.25/2) \times 10^{-4}, \quad p = 0.01
\]

or more formally,

\[
\text{ES} = \frac{-1}{p} \int_{-180}^{-20} x f(x) dx, \quad f(x) = (1.25/2) \times 10^{-4}, \quad p = 0.01
\]
Comparisons between ES and VaR

- VaR didn’t change: 20 in both cases
- ES increased from 60 to 100
- It is much more difficult to hide changes to the left tail with ES
Advantages and disadvantages

Reminders on conditional expectations

Expected shortfall

Expected shortfall with bonds

Advantages and disadvantages
ES advantages and disadvantages

- Advantages
 - More info on extreme losses
 - Less easily manipulated
 - ES is subadditive
ES advantages and disadvantages

- **Advantages**
 - More info on extreme losses
 - Less easily manipulated
 - ES is **subadditive**

- **Disadvantages**
 - More difficult to calculate (depends on tail data)
 - More difficult to explain
 - Institutions all use VaR
 - Backtesting difficult
Backtesting

- Tests to see if risk measures were working in past
- VaR
 - Observe VaR exceedances
 \[\hat{p} = \Pr(Q \leq \text{VaR}(p)) \] (Count)
 - Fraction of losses greater than VaR
 - Should be \(p \)
- ES
 - This is much trickier
 - Were the conditional expectations correct in the past?
 \[ES = -E(Q|Q \leq -\text{VaR}(p)) \]
Reminders on conditional expectations
Expected shortfall
Expected shortfall with bonds
Advantages and disadvantages