4 Applications of the Sylow Theorems

We will look at the structure of groups G of order pq where p, q are prime. There groups will be given by two generators a, b of order p, q. [Recall that G is generated by a set S if no proper subgroup of G contains S. We write $G = \langle S \rangle$.]

Lemma 4.1. Suppose that G is generated by a, b of order n, m satisfying:

\[bab^{-1} = a^r \]

Then every element g of G can be written in the form $g = a^i b^j$ and

\[(a^i b^k)(a^j b^\ell) = a^{i+j} b^{k+\ell} \]

Furthermore, the expression $g = a^i b^j$ is unique (i.e., i, j are uniquely determined modulo n, m resp.) assuming that $\langle a \rangle$ and $\langle b \rangle$ are disjoint (i.e., no nontrivial power of a is equal to a nontrivial power of b).

Remark 4.2. I underlined the word “suppose” because there is no guarantee that there exists a group G with elements a, b satisfying (1). For example $r = n$ is not possible since bab^{-1} has the same order as a. In order to show that G exists we have to actually construct the group G.

Proof. Equation (2) implies that the set of all elements of G of the form $a^i b^j$ forms a subgroup. Since a, b generate G this subgroup is all of G. But (2) follows from (1):

\[bab^{-1} = a^r \Rightarrow b^k ab^{-k} = a^r \Rightarrow b^k a^i b^{-k} = a^r b^k \Rightarrow b^k a^j = a^{i+j} b^k \]

The uniqueness follows from the fact that $a^i b^k = a^i b^\ell \Leftrightarrow a^{i-j} = b^{\ell-k}$.

Definition 4.3. For $n \geq 3$ the dihedral group D_{2n} is defined to be the group generated by s, t so that $s^n = t^2 = 1$ and $tst = s^{-1}$. Thus by Lemma 4.1

\[D_{2n} = \{1, s, s^2, \ldots, s^{n-1}, t, st, s^2 t, \ldots, s^{n-1} t\} \]

with multiplication rule given by:

\[(s^j t^k)(s^j t^\ell) = s^{ij} t^{k+\ell} \]

where the sign of j is $(-1)^k$.

Theorem 4.4. Every nonabelian group G of order $2p$ (where p is an odd prime) is dihedral.
Proof. Let P be a p-Sylow subgroup of G. Then $P \triangleleft G$ since it has index 2. Let $a \in P$ be a generator (so a has order p) and let $b \in G$ be an element of order 2. Since P is normal, $bab^{-1} = a^r$ for some r not divisible by p. Since $b^2 = 1$ we must have $r^2 \equiv 1 \pmod{p}$ so $r = \pm 1$. Since G is not abelian we must have $r = -1$ and $G \cong D_{2p}$. □

We want to generalize Definition 4.3 and the above theorem to groups of order pq where $p > q$ are prime. We will give a rigorous construction of G in order to avoid the criticism of Remark 4.2.

Assume that $p \equiv 1 \pmod{q}$. Then q divides the order $(p - 1)$ of the multiplicative group of units F_q^\times of the field $F_p = \mathbb{Z}/p$. Consequently, by Cauchy, F_q^\times contains an element of order q, i.e., a number r so that

$$r^q \equiv 1, \quad r \not\equiv 1 \pmod{p} \quad (3)$$

Let $\alpha, \beta : F_p \to F_p$ be the set mappings given by $\alpha(x) = x + 1$ and $\beta(x) = rx$. Then α, β are permutations of F since $\alpha^p = 1 = \beta^g$ and the following calculation shows that $\beta \alpha \beta^{-1} = \alpha^r$.

$$\beta \alpha \beta^{-1}(x) = \beta \alpha(x/r) = \beta(x/r + 1) = r(x/r + 1) = x + r = \alpha^r(x)$$

Consequently, by Lemma 4.1, the permutations α, β generate a subgroup of order pq in the permutation group on F_p. Since it depends only on p, q, r we will call this group $G(p, q, r)$. This is a nonabelian group of order pq where $p > q$ are prime and r satisfies (3) above.

Theorem 4.5. Let $p > q$ be primes. Then

1. There exists a nonabelian group of order pq iff $p \equiv 1 \pmod{q}$.

2. Any two nonabelian groups of order pq are isomorphic.

Proof. Let G be a group of order pq and let P be the p-Sylow subgroup of G. Then $P \leq N(P) \leq G$ so $N(P)$ is either equal to P or G. But $N(P) = P$ is not possible since the index of $N(P)$ must be congruent to 1 modulo p by the Sylow theorems. Therefore $N(P) = G$ and $P \triangleleft G$. Similarly the q-Sylow subgroup Q of G will be normal in G if q does not divide $p - 1$. This will imply that $G = P \times Q$ which is abelian. This proves (1).

To prove the second statement suppose that G is nonabelian. Then $Q \not\triangleleft G$. Let a, b be generators of P, Q. Then $bab^{-1} = a^r$ for some r not divisible by p. Also since $b^2 = 1$ we must have $r^q \equiv 1 \pmod{p}$ (and $r \not\equiv 1$ since G is nonabelian). Thus G is isomorphic to $G(p, q, r)$ for some r satisfying (3).

1. Since \mathbb{Z}/p is a field, the polynomial equation $x^2 = 1$ can have at most two solutions in \mathbb{Z}/p.

It remains to show that $G(p, q, r) \cong G(p, q, s)$ if s is another nontrivial solution of the congruence $x^q \equiv 1 \mod p$. However, the solutions of this equation are given by $x = r^i$ for $i = 1, 2, \ldots, q$ so $s = r^i$ for some $1 \leq i \leq q - 1$. But then an isomorphism $\phi : G(p, q, s) \to G(p, q, r)$ is given by $\phi(\alpha) = \alpha$, $\phi(\beta) = \beta^i$. [Then $\phi(\beta \alpha \beta^{-1}) = \beta^i \alpha \beta^{-i} = \alpha^{r^i} = \alpha^s = \phi(\alpha^s)$].

Now we will look at groups G of order p^2q.

Theorem 4.6. Every group of order p^2q with p, q prime has a normal Sylow subgroup.

Proof. Let P (resp. Q) be a p-Sylow subgroup (resp. q-Sylow subgroup) of G. Then we want to show that either $P \triangleleft G$ or $Q \triangleleft G$.

Case 1. Suppose that $q \not\equiv 1 \mod p$. Then $P \triangleleft G$ since $|G : N(P)| \equiv 1 \mod p$.

Case 2. Suppose that $p^2 \not\equiv 1 \mod q$. Then $p \not\equiv 1 \mod q$. Consequently, $|G : N(Q)| \neq p, p^2$ so $|G : N(Q)| = 1$ making $Q \triangleleft G$.

Case 3. The remaining case ($q \equiv 1 \mod p$ and $p^2 \equiv 1 \mod q$) is only possible when $p = 2$ and $q = 3$. If Q is not normal in G then G must have four 3-Sylow subgroups giving 8 elements of order 3. The remaining $12 - 8 = 4$ elements must be P forcing P to be normal in G.

Rotman has more to say about groups of order 12.

Theorem 4.7. Let G be a group of order 12. Then either

(a) G has a normal 3-Sylow subgroup, in which case G has an element of order 6 or

(b) $G \cong A_4$ which has a normal 2-Sylow subgroup.

Proof. Let $Q = \{1, a, a^2\}$ be a 3-Sylow subgroup of G.

(a) Suppose first that $Q \triangleleft G$. Then a, a^2 are the only elements of G of order 3 so the centralizer $C(a)$ of a has index 1 or 2 so $|C(a)| = 6$ or 12. In either case $C(a)$ contains an element b of order 2. Then ab has order 6 since a, b commute.

(b) If $Q \not\triangleleft G$ then Q must be self-normalizing and the number of 3-Sylow subgroups must be 4. The group G acts on the set of 3-Sylow subgroups by conjugation giving a homomorphism

$$\phi : G \to S_4$$

We know that 3-Sylow subgroup cannot normalize each other. Therefore, $\phi(a)$ fixes Q and cyclically permutes the other three 3-Sylow subgroups of G (making them even permutations). Since the 3-Sylow subgroups generate G, the image of ϕ lies in A_4. Also ϕ is a monomorphism since each 3-Sylow subgroup is self-normalizing so there is no nontrivial element of G which normalizes all of them.

2If the four 3-Sylow subgroups of G are all contained in a subgroup $H \leq G$ then $|H : N_H(Q)| = 4$ which implies that $|H|$ is divisible by 4. Since $Q \leq H$, $|H|$ is also divisible by 3 so $|H| = 12$ and $H = G$.

3