5. Integral dependence and valuation

This section is about integral extensions and the integral closure of a ring.

5.1. Integral extensions.

Definition 5.1. Suppose that A is a subring of B. We say that B is an integral extension of A if very element of B is integral over A. Recall that $b \in B$ is integral over A if b is a root of a monic polynomial

$$f(x) = x^n + a_1x^{n-1} + a_2x^{n-2} + \cdots + a_n$$

with coefficients $a_i \in A$. (In other words, $f(b) = 0$.)

If $f(b) = 0$ then every power of b can be written as an A-linear combination of the powers

$$1, b, b^2, \ldots, b^{n-1}$$

So, every element of $A[b]$ can be written as an A-linear combination of these n elements.

Lemma 5.2. $A[b]$ is finitely generated as an A-module (if b is integral over A).

The set of all elements of B which are integral over A is called the integral closure of A in B and we call it C. We will show that C is a subring of B containing A. We say that A is integrally closed in B if $C = A$.

Example 5.3. \mathbb{Z} is integrally closed in \mathbb{Q}.

To prove this take any element of \mathbb{Q} which is integral over \mathbb{Z} and write it in reduced form: x/s where x, s are relatively prime. Then

$$\left(\frac{x}{s}\right)^n + a_1 \left(\frac{x}{s}\right)^{n-1} + \cdots + a_n = 0$$

$$x^n + a_1x^{n-1}s + \cdots + a_ns^n = 0$$

This implies that s divides x^n. So, $s = \pm 1$.

Exercise 5.4. Show that any UFD is integrally closed in its field of fractions.

Here are more things that follow just from the definition:

Proposition 5.5. Suppose that B is an integral extension of A.

1. Let $a = A \cap b$ (so that $A/a \subseteq B/b$) then B/b is an integral extension of A/a.

2. $S^{-1}B$ is an integral extension of $S^{-1}A$.
Proposition 5.6. Suppose that A is a subring of B and $b \in B$. Then the following are equivalent.

1. b is integral over A.
3. $A[b]$ is contained in a subring M of B which is a f.g A-module.
4. There is a f.g. A-module M on which $A[b]$ acts faithfully.

$A[b]$ acts faithfully on M means that the induced ring homomorphism $A[b] \to \text{End}(M)$ is injective. This is equivalent to saying that the annihilator of M in $A[b]$ is zero.

Proof. (1) \Rightarrow (2) by the lemma and (2) \Rightarrow (3) is clear. Also (3) \Rightarrow (4) since $A[b]$ acts faithfully on M because M contains $A[b]$: The composition $A[b] \to \text{End}(M) \to \text{End}(A[b])$ is injective. So, it suffices to prove that (4) \Rightarrow (1). This follows from the determinant trick (Prop 2.3). Multiplication by b induces an A-module homomorphism $\varphi : M \to aM = M$ where $a = A$. Therefore there is a monic polynomial $f[x] \in A[x]$ so that $f(\varphi) = 0$ in $\text{End}(M)$. Since M is a faithful $A[b]$ module, this implies that $f(b) = 0$ in $A[b]$. So, b is integral over A.

Corollary 5.7. If A is a subring of B and B is a finite A-algebra (f.g. A-module) then B is an integral extension of A.

Proof. Use (4).

Corollary 5.8. If $b_1, \cdots, b_n \in B$ are integral over A then $A[b_1, \cdots, b_n]$ is an integral extension of A.

Proof. Suppose that $f_i(x) \in A[x]$ are monic polynomials of degree d_i so that $f_i(b_i) = 0$. Then any power of b_i can be written as an A-linear combination of the powers $1, b_i, b_i^2, \cdots, b_i^{d_i-1}$.

So, every element of $A[b_1, \cdots, b_n]$ can be written as an A-linear combination of the monomials $b_1^{m_1}b_2^{m_2}\cdots b_n^{m_n}$ where $m_i < d_i$. So, $A[b_1, \cdots, b_n]$ is f.g. A-module. So, all of its elements are integral over A.

Corollary 5.9. If B is an integral extension of A and C is an integral extension of B then C is an integral extension of A.

Corollary 5.10. If $A \subseteq C \subseteq B$ and C is the integral closure of A in B then C is integrally closed.