(1) If v is a normal vector to the plane $z = t$, then v is in the plane. Since v is normal to the plane, we have $v \cdot (a, b, c) = 0$, where (a, b, c) is any point in the plane. Therefore, $v \cdot (a, b, c) = 0$. Let $v = (x, y, z)$ be a vector in the plane. Then, $v \cdot (a, b, c) = 0$.

(2) The orthogonal complement of the nullspace of the matrix A is the multiplicative of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.

(3) The orthogonal complement of the nullspace of the matrix A is the nullspace of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.

(4) The orthogonal complement of the nullspace of the matrix A is the nullspace of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.

(5) The orthogonal complement of the nullspace of the matrix A is the nullspace of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.

(6) The orthogonal complement of the nullspace of the matrix A is the nullspace of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.

(7) The orthogonal complement of the nullspace of the matrix A is the nullspace of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.

(8) The orthogonal complement of the nullspace of the matrix A is the nullspace of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.

(9) The orthogonal complement of the nullspace of the matrix A is the nullspace of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.

(10) The orthogonal complement of the nullspace of the matrix A is the nullspace of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.

(11) The orthogonal complement of the nullspace of the matrix A is the nullspace of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.

(12) The orthogonal complement of the nullspace of the matrix A is the nullspace of the matrix $A^T A$. Let v be a vector in the nullspace of A. Then, $A v = 0$. Therefore, $A^T A v = 0$. Hence, v is in the nullspace of $A^T A$. Conversely, if v is in the nullspace of $A^T A$, then $A^T A v = 0$. Therefore, $A v = 0$. Hence, v is in the nullspace of A. Thus, the nullspace of $A^T A$ is the orthogonal complement of the nullspace of A.