(1) Let L_α be the line in \mathbb{R}^2 gotten by rotating the x-axis counterclockwise by the angle α, and define L_β similarly. Let Ref_α and Ref_β be the reflections of \mathbb{R}^2 across L_α and L_β, respectively.
(a) In the case where $\alpha = \pi/4$ and $\beta = -\pi/6$, draw a picture that illustrates the compositions $\text{Ref}_\beta \circ \text{Ref}_\alpha$ and $\text{Ref}_\alpha \circ \text{Ref}_\beta$. Are the results the same?
(b) Based on your answer in (a), you should notice that $\text{Ref}_\beta \circ \text{Ref}_\alpha$ is rotation by some angle. What angle?
(c) Prove your answer to (b) using matrix multiplication.
(d) Check that your answer to (b) makes sense in the special case where $\alpha = \beta$.

(2) Also do the following problems:
3.1: 6, 8, 14, 16
3.2: 6, 14, 16, 50