Let \(\vec{v}_1 = \begin{bmatrix} \sqrt{2}/6 \\ 2\sqrt{2}/3 \\ \sqrt{2}/6 \end{bmatrix} \), \(\vec{v}_2 = \begin{bmatrix} 2/3 \\ -1/3 \\ 2/3 \end{bmatrix} \), and \(\vec{v}_3 = \begin{bmatrix} \sqrt{2}/2 \\ 0 \\ -\sqrt{2}/2 \end{bmatrix} \). Let \(\mathcal{B} \) be the basis of \(\mathbb{R}^3 \) consisting of \(\vec{v}_1, \vec{v}_2, \vec{v}_3 \). As you saw on the midterm, \(\mathcal{B} \) is an orthonormal basis.

For each of the following linear transformations \(T_i \), write their matrix with respect to \(\mathcal{B} \) (i.e. \([T_i]_{\mathcal{B}} \)), and a product of matrices and their inverses that yields their standard matrix.

(a) \(T_1 \): projection onto the line spanned by \(\vec{v}_2 \).
(b) \(T_2 \): reflection across the plane spanned by \(\vec{v}_2 \) and \(\vec{v}_3 \).
(c) \(T_3 \): counterclockwise rotation by \(\pi/4 \) radians around \(\vec{v}_1 \).
 (Here, “counterclockwise” means as viewed from \(\vec{v}_1 \).)
(d) \(T_4 \): counterclockwise rotation by \(2\pi/3 \) radians around \(\vec{v}_2 \).

Also do the following problems:
6.3: 22, 24, 25. (I didn’t spend a lot of time talking about Cramer’s rule, so read about it in the book.)
7.1: 2, 8, 10, 15, 16

Happy Thanksgiving!