Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology

John P. Huelsenbeck,1* Fredrik Ronquist,2 Rasmus Nielsen,3 Jonathan P. Bollback1

As a discipline, phylogenetics is becoming transformed by a flood of molecular data. These data allow broad questions to be asked about the history of life, but also present difficulties and computational problems. Bayesian inference of phylogeny brings a new perspective to a number of outstanding issues in evolutionary biology, including the analysis of large phylogenetic trees and complex evolutionary models and the detection of the footprint of natural selection in DNA sequences.

The idea that species are related through a history of common descent is an old one, predating Darwin. Yet the idea provides an organizing principle in biology that has profound importance for a number of fundamental questions. These questions range from the basic, What is the phylogeny of life?, or the more esoteric, How can the association in traits caused by a common histro be accommodated?, to the practical, How did a virus spread through a population? Today, in fact, any study of DNA sequences sampled from different species or from different individuals in a population is likely to start with a phylogenetic analysis. The widespread use of phylogenies today is largely driven by the fundamental importance of phylogenies to questions in biology, the immense quantity of sequence data produced by biologists, and the fact that sophisticated analyses can now be performed by using fast desktop computers.

Perhaps the most frustrating aspect of phylogenetic analysis to the uninitiated is the bewildering variety of inference methods that could be performed and that are actively promoted by different experts. This article might be misconstrued as describing yet another such method—Bayesian inference of phylogeny, a method that has only recently found its way to the field despite its long tenure in statistics (1–3). Although Bayesian inference of phylogeny uses the same models of evolution as many other methods of analysis, it represents a powerful tool for addressing a number of long-standing, complex questions in evolutionary biology (Table 1). Here we describe Bayesian inference of phylogeny and illustrate applications for inferring large trees, detecting natural selection, and choosing among models of DNA substitution.

Table 1. The Bayesian approach to problems in phylogeny.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Bayesian approach</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferring phylogeny</td>
<td>Find tree with maximum posterior probability; evaluate features in common among the sampled trees</td>
<td>(1–3)</td>
</tr>
<tr>
<td>Evaluating uncertainty in phylogenies</td>
<td>Evaluate clade probabilities; form credible set containing trees whose cumulative probability sums to 0.95</td>
<td>(3, 40)</td>
</tr>
<tr>
<td>Detecting selection</td>
<td>Model substitution process on the codon and calculate probability of being in purifying or positively selected class; sample substitutions and count number of synonymous and nonsynonymous changes</td>
<td>(29, 32)</td>
</tr>
<tr>
<td>Comparative analyses</td>
<td>Perform analysis on many trees, and weight results by the probability that each tree is correct</td>
<td>(41–43)</td>
</tr>
<tr>
<td>Divergence times</td>
<td>Use fossils as a calibration. Infer divergence times by using a strict or relaxed molecular clock</td>
<td>(44)</td>
</tr>
<tr>
<td>Testing molecular clock</td>
<td>Calculate Bayes factor for the clock versus no branch length restrictions</td>
<td>(24)</td>
</tr>
</tbody>
</table>

Bayesian Inference of Phylogeny

Bayesian inference of phylogeny is based on a quantity called the posterior probability of a tree (Fig. 1). Bayes’s theorem

\[
\text{Pr}[\text{Tree} \mid \text{Data}] = \frac{\text{Pr}[\text{Data} \mid \text{Tree}] \times \text{Pr}[\text{Tree}]}{\text{Pr}[\text{Data}]}
\]

(where the vertical bar should be read as “given”) is used to combine the prior probability of a phylogeny (Pr[Tree]) with the likelihood (Pr[Data \mid Tree]) to produce a posterior probability distribution on trees (Pr[Tree \mid Data]). The posterior probability of a tree can be interpreted as the probability that the tree is correct. Inferences about the history of the group are then based on the posterior probability of trees. For example, the tree with the highest posterior probability might be chosen as the best estimate of phylogeny (1). Usually all trees are considered a priori equally probable, and the likelihood is calculated under one of a number of standard Markov models of character evolution.

The posterior probability, although easy to formulate, involves a summation over all trees and, for each tree, integration over all possible combinations of branch length and substitution model parameter values. It is all but impossible to do this analytically. Fortunately, a number of numerical methods are available that allow the posterior probability of a tree to be approximated, the most useful of which is Markov chain Monte Carlo (MCMC). MCMC has revolutionized Bayesian inference, with recent applications to Bayesian phylogenetic inference (1–3) as well as many other problems in evolutionary biology (5–7). The basic idea is to construct a Markov chain that has as its state space the parameters of the statistical model and a stationary distribution that is the posterior probability distribution of the parameters. For the phylogeny problem, the MCMC algorithm involves two steps: (i) A new tree is proposed by stochastically perturbing the current tree. (ii) This tree is then either accepted or rejected with a probability described by Metropolis et al. (8) and Hastings (9). If the new tree is accepted, then it is subject to further perturbation. It turns out that for a properly constructed and adequately run Markov chain, the proportion of the time that any tree is visited is a valid approximation of the posterior probability of that tree (10). Although MCMC has made analysis of many complex models possible, it is not a panacea, as chains can fail to converge to the stationary distribution for a number of reasons (e.g., a poor
mechanism for proposing new states or failure to run the chain long enough).

Inferring Large Trees

Phylogenetic inference is difficult primarily because of the large number of trees that may describe the relationships of a group of species and the vagaries of the substitution process. When rates of DNA substitution are high, for example, multiple substitutions at a site can obscure the history of a character. In fact, under some branch-length conditions, phylogenetic methods may converge to the wrong tree, a situation in which the method is said to be inconsistent (11). Phylogenetic methods that explicitly model the substitution process, thereby correcting for multiple substitutions, can often overcome problems of statistical inconsistency. Unfortunately, the most powerful methods (e.g., maximum likelihood) can only be used on relatively small data sets and many of the faster methods (e.g., many distance methods) do not take full advantage of the information contained in the DNA sequences.

Bayesian inference takes a view of the phylogeny problem that makes analysis of large data sets more tractable: Instead of searching for the optimal tree, one samples trees according to their posterior probabilities. Once such a sample is available, features that are common among the trees can be discerned. For example, the sample can be used to construct a consensus tree, with the posterior probability of the individual clades indicated on the tree. This is roughly equivalent to performing a maximum likelihood analysis with bootstrap resampling (3), but much faster.

To illustrate this, we wrote a computer program implementing the MCMC algorithm (8, 9). In particular, we implemented a variant of MCMC called Metropolis-coupled MCMC that is less prone to entrapment in local optima (12). We applied the method to four large phylogenetic data sets that span the size range of many problems faced by systematists today (13–16). The smallest data set included 106 wingless sequences sampled from insects, whereas the largest included 357 atpB sequences sampled from plants. We assumed a general model of DNA substitution in the analyses (17, 18). This model allowed each nucleotide change to have its own rate and the nucleotide bases to have different frequencies. We allowed rates to vary across sites either by assuming that the rate at a site is a random variable drawn from a gamma distribution or by dividing the sites into first, second, and third codon positions and estimating their rates of substitution separately. At least two chains were run for each data set. All chains were started from random trees (19).

![Fig. 1. The main components of a Bayesian analysis.](image)

The **prior probability** of a tree represents the probability of the tree before the observations have been made. Typically, all trees are considered equally probable, a priori. However, other information can be used to give some trees more prior probability (e.g., the taxonomy of the group).

The **likelihood** is proportional to the probability of the observations (often an alignment of DNA sequences) conditional on the tree. This probability requires making specific assumptions about the processes generating the observations.

The **posterior probability** of a tree is the probability of the tree conditional on the observations. It is obtained by combining the prior and likelihood for each tree using Bayes’ formula. The greatest practical problems associated with the use of MCMC are determining how long to run a chain to obtain a good approximation of the posterior probabilities of trees and identifying pathological cases where the MCMC algorithm fails to converge. We examined a number of diagnostics to check convergence of multiple chains [see supplemental material (20)]. Most important, we checked that inferences made from independent chains were indistinguishable. The posterior probabilities of individual clades are highly correlated for independent chains, as shown in Fig. 2. Together the results of the various diagnostics suggest that the chains converged and that the inferences from the chains are valid.

The Bayesian analyses, run in the course of a few weeks on a fast desktop computer, were largely concordant with the parsimony analyses (20). However, the support for the deeper divergences was generally higher in the Bayesian analysis. Notably, for the plant atpB data the Bayesian tree differed in the placement of Ceratophyllum. Parsimony placed this enus sister to monocots with low support, whereas the Bayesian analysis placed Ceratophyllum more basally and in a position that is more congruent with the results from another gene (rbcL) (14) and a study that included 560 species and three genes (21). The Bayesian analysis of Astragalus was also similar to the parsimony analysis, with the exception that the support for the Neo-Astragalus clade was more similar to the corrected parsimony bootstrap proportions rather than the uncorrected values. The Bayesian analysis also provided information on the substitution model parameters (20). The estimates of the substitution rates were typically higher than the corresponding parsimony estimate; this is necessarily true as the parsimony method minimizes the number of changes at a site and must underestimate the total number of changes.

Choosing Appropriate Models

The results of any phylogenetic analysis, including those discussed above, are conditional on the assumptions made in the analysis. Modeling assumptions that poorly fit the observations can lead to erroneous inferences. For example, a phylogenetic model that assumes equal rates across sites can result in inconsistent inferences when rates differ, even if all other parameters of the model are correct (22). It is important, then, that a careful consideration of alternative models of
of model choice is not feasible here, but we will illustrate one method that uses predictive
densities–posterior predictive simulation (25).

If an evolutionary model does a good job of explaining the observed DNA se-
quen
ces, then data simulated under that model should be similar to the obser-
va
tions. Posterior predictive simulation tests the adequacy of a model by comparing a
test statistic with the posterior predictive distribution of that statistic generated under
the assumption that the model is correct. The test statistic should measure how well
a model performs in predicting the observations. The posterior predictive distribution
data, then the original test statistic should fall
within the central region of the simulated
distribution. For a poorly fitting model, the
test statistic will fall outside the tails of the
predictive distribution.

We illustrate the use of posterior predic-
tive simulation for measuring the overall ade-
quacy of a phylogenetic model in simulation
and for testing the homogeneity of nucleotide
frequencies at the Drosophila alcohol dehy-
rogenase (Adh) locus (26). For the first

case, we compared a simple model of DNA
substitution (27) with a more general model
(17) using data simulated under the latter. As
expected, the inadequacy of the simple model
is revealed (Fig. 3B; $p_F = 0.008$)
while the more parameter-rich model pro-
vides a good description of the underlying
process (Fig. 3A; $p_F = 0.556$). For the
empirical example involving 58 Adh se-
quen
ces (26), we use a test statistic that
measures the general deviation in nucleo-
tide frequencies among the sequences (28).
The predictive distribution of this test sta-
tistic was evaluated by using MCMC (29)
and compared with the observed value (Fig.
3C). Because the observed value is well
outside the predictive distribution, the hy-
pothesis of constant base frequencies
among species is easily rejected. Although
this method of inference is in the classical
tradition of hypothesis testing, the Bayes-
ian approach adds the ability to deal appro-
priately with uncertainty in the phylogeny.

Bayesian Inference of Functional
Importance in Molecular Evolution

In studies of the evolution of biological
molecules and their functions, researchers
are often interested in substitution patterns.
Typical questions include the following: (i)
At what rate do various types of substitu-
tions occur? (ii) Has the mode of evolution
changed along the phylogeny? (iii) Which
parts of the protein are functionally con-
strained or under positive selection? And
(iv) is the evolution of amino acid residues

correlated? The two most common ap-
proaches to these questions are to infer
substitutions on a fixed phylogeny by using
parsimony and to analyze the inferred sub-
stitutions as if they were real data, or, to
develop likelihood models that can be com-
pared by using likelihood ratio tests.

The parsimony approach has been exten-
sively used in studies of molecular evolution.
However, it suffers from the drawback that
the number of substitutions will be underes-
timated and that a large part of the statistical
uncertainty is ignored when concentrating on
only one possible history of substitutions on
the phylogeny (29). The approach using like-
lihood ratio tests has a solid statistical foun-
dation, but every time a new hypothesis is to
be tested, a new likelihood model must be

Fig. 2. Convergence of independent Markov chains. The figures show the posterior probability of a
clace [or subtree; τ^i] conditional on the observed DNA sequences (X) for two chains, each of which started from
different random trees. Note that the posterior probabilities of individual clades found in
different chains [$f_1(\tau^i | X)$ vs. $f_2(\tau^i | X)$] is highly correlated, and that there are no instances
in which a particular clade found with high probability in one chain is not found in the other. All
analyses assumed the general time reversible (GTR) model of DNA substitution. Rate variation
across sites was accommodated by using the gamma (Γ) model for the ITS data and the
site-specific ($+$SS) model for the protein-coding genes. The analyses included from $s = 106$ to $s = 357$
sequences that were from $c = 378$ to $c = 1497$ sites in length.

S C I E N C E ’ S C O M P A S S

There is a compelling argument that...
implemented. In addition, both methods typically assume that the phylogeny is known without error.

Ideally, we would like to study molecular evolution by making inferences regarding the type and distribution of substitutions on the phylogeny, while at the same time accommodating the inherent uncertainty in the tree and associated history of substitutions. Consider an alignment of DNA sequences involving four species in which “A” was observed at a site for three of the species and “C” for the fourth. One history of substitution that could explain these observations involves a single change along the branch leading to the C. However, there are infinitely many other such histories that could explain the observations, all involving more changes. The parsimony approach considers only a single history—the history of substitution that involves the fewest number of changes. In a Bayesian framework one considers many possible histories of substitution, weighted by their probability by using simulation. Moreover, the uncertainty in the tree and model parameters can be accounted for by sampling trees with MCMC.

The approach of mapping substitutions on a tree can be used to detect positively selected residues. Positive selection occurs when natural selection increases the frequency of new amino acid mutations. Positive selection at the molecular level is shown by an increase in the rate of nonsynonymous substitution over the rate of synonymous substitution. Positive selection occurs in many systems, but particular attention has focused on viral DNA sequences. A statistical approach for identifying sites undergoing positive selection is based on first testing for the presence of positively selected sites with a likelihood ratio test, and then, if the test is significant, identifying positively selected sites by using an empirical Bayes approach. Empirical Bayes approaches differ from other Bayesian methods in that the prior distribution is determined, in part, by the data. The empirical Bayes approach has been useful in identifying positively selected residues in a number of systems.

An alternative approach is to use the posterior distribution of substitutions to examine the pattern of nonsynonymous substitutions. Of particular interest are amino acid residues in which more nonsynonymous substitutions occurred than expected under neutrality (i.e., equal nonsynonymous and synonymous rates). We illustrate this method on a data set containing 28 influenza sequences of the hemagglutinin gene. Hemagglutinin is an envelope gene of the virus and is a potential target for the host immune system. Previous studies based on maximum likelihood, and other methods, have demonstrated that positive selection is acting on this set of sequences. To identify positively selected sites, we used the posterior expectation of the number of nonsynonymous substitutions in a site, E_{NS}. Using MCMC, we estimated E_{NS} for each site under the hypothesis that the rate of nonsynonymous substitutions equals the rate of synonymous substitutions. The predictive distribution of E_{NS} was also evaluated by using MCMC. Seven residues were identified with a value of E_{NS} larger than 4. All of these residues were located in proximity to each other on the globular head of the molecule. The posterior predictive probability of $E_{NS} > 4$ in a residue is approximately 0.002 if the rate of nonsynonymous substitution equals the rate of synonymous substitution. Presumably these seven sites have increased levels of nonsynonymous variation because of positive selection. This observation is confirmed by the fact that all seven residues are located within known antigenic sites, and four of them are located within the very same antigenic site.

The Future of Bayesian Phylogenetic Inference

There are many reasons to believe that the success of Bayesian inference will continue as it is applied to a wider range of problems in evolutionary biology. These reasons include the ease with which complex evolutionary models can be examined, the accommodation of phylogenetic uncertainty (an advantage conferred by using MCMC), and the fact that the method concentrates attention on the evolutionary models. Bayesian analysis should also prove useful in addressing some of the outstanding problems in phylogenetics, such as detecting and accommodating horizontal gene transfer (a process that complicates phylogenetic analysis of bacteria), per-

Fig. 3. The posterior predictive distributions for tests of (A) the adequacy of the GTR model, (B) of the adequacy of the Jukes-Cantor model, and (C) the hypothesis of constant nucleotide frequencies over time. The arrows above the distributions show the observed value of the test statistics.

Fig. 4. The protein structure of the influenza hemagglutinin protein, chains A and B. The seven positively selected residues are marked in red.
forming phylogenetic analyses by using whole-genome data and understanding the evolution of the genome in the context of phylogeny, and constructing large trees by combining the results of smaller and overlapping analyses.

References and Notes

20. Supplementary material is available on Science Online at www.sciencemag.org/cgi/content/full/294/5550/2310/DC1
28. DNA sequence were simulated under the GTR model (17) on a tree of ten taxa and 2000 nucleotides. The MCMC analysis, conducted by using MrBayes, was under the GTR and Jukes-Cantor (27) models. 1000 samples were randomly drawn from the joint posterior distribution of model parameters and topology, and new data sets of 2000 sites were simulated under both models. The test statistic was calculated as the multinomial probability of observing the data. We used

\[
X^2 = \sum_{i=1}^{m} \sum_{k=1}^{2} \sum_{j=k-1}^{1} \left(\frac{X_{ijk} - \bar{X}_{ij}}{\bar{X}_{ij}} \right)^2
\]

as a test statistic for examining the constancy of nucleotide frequencies over time. The summations are over species and nucleotides, and \(\bar{X}_{ij} \) is the average frequency of nucleotide \(j \) in the pooled data.

31. Z. Yang et al., Genetics 155, 431 (2000).
38. A Markov chain was simulated for 1,000,000 cycles under a GTR model (17) with MrBayes. After the first 100,000 cycles were discarded as burn-in, the chain was sampled every 1000 updates. The posterior predictive distribution is approximated by simulating a new data set for each of the sampled parameter values and then evaluating the chi-square statistic for each of the simulated data sets.
39. Locations of antigenic sites were obtained from the Influenza Sequence Database, Los Alamos National Laboratory, Los Alamos, NM.
45. This research was supported by a Swedish National Research Council grant (F.R.) and NSF grants DEB-0075406 (J.P.H.) and DEB-0089487 (R.N.).